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Preface

The random bond Ising model (RBI) was proposed to include disorder into the
standard Ising model which was already understood quite well. It prooved to be
harder to tackle than expected. Although some numerical results are available,
there are still a lot of open questions.

One of the most valuable tools when dealing with disordered and impure
systems is super-symmetry. The application of super-symmetric methods in con-
densed matter theory was initiated by Efetov in 1983. Recent developments of
integration theory in super-spaces made it possible to express integrals defined
over some classical Lie group in terms of integrals over superfields, that live on
a coset space. These kind of identities are called ”color-flavor transformations”
since integrals similar to them arise in the context of quark and gluon fields.

The main goal of this thesis is to obtain a the lattice version of a non-linear
sigma model for the RBI with binary probability distribution. Chapter 1 is
intended to introduce the physical background of the Ising model, disorder treat-
ment and the super-symmetric tools needed to do this. In chapter 2 a new
color-flavor transformation is derived that relates an integral over the special-
orthogonal group — SO(N) — to an integral over the symmetric super-coset-space
Osp(2n|2n)/Gl(n|n). Chapter 3 is dedicated to the application of the color-
flavor transformation derived in chapter 2. Here the random bond Ising model is
mapped onto the lattice version of a sigma model using this transformation.
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Abstract — Zusammenfassung

Das Ziel dieser Arbeit ist die Herleitung der Gitterversion eines nichtlinearen Sig-
mamodelles fiir das Random-Bond-Ising Modell (RBI) mit bindrer Wahrschein-
lichkeitsverteilung. [Cho 97] folgend wird das RBI auf ein Netzwerkmodell ab-
gebildet. Dieses Netzwerkmodell hat grofle Ahnlichkeit mit dem 1988 von Chal-
ker und Coddington vorgeschlagenen Modell fiir den ganzzahligen Quanten-Hall-
Effekt [Chal 88]. Der Unterschied liegt im Auftreten des Zufalls: In dem mit
dem RBI assoziierten Modell lebt ein O(1) = Z, Zufall auf den Gitterpunkten
(nodes) des Netzwerkmodelles, wiahrend im CC-Modell die Verbindungen (links)
zwischen den Punkten einen U(1) Zufall tragen.

Die Abbildung des RBI-Hamiltonians fiihrt iiber einen Dirac-Hamiltonian di-
rekt zu dem bereits beschriebenen Netzwerkmodell. Um dem nichtlinearen Sig-
mamodell ndher zu kommen, wird das Integral {iber die O(1) durch ein Integral
iiber einen symmetrischen Superraum ersetzt. An diesem Punkt setzt eine neuar-
tige Transformation an. Diese Transformation — die Color-Flavor-Transformation
(C-F) — wird fiir den allgemeinen Fall SO(N) bzw. O(N) hergeleitet. Die An-
wendung erfolgt dann auf das zum RBI gehorige Netzwerkmodell — dhnlich wie
in [Zirn 97] fiir das CC-Modell. Die dabei auftauchenden Spezialfille sind die
O(1) und die SO(1). In diesem Zusammenhang ist bemerkenswert, dafl die C-F-
Transformation auch fiir kleine NV noch exakt ist.

Fiir die resultierende Gitterwirkung besteht nun die Hoffnung, dafl sich ein
Kontinuums-Grenzwert bilden 1a88t, der dann zu einem nichtlinearen Sigmamo-
dell fithrt. Aus diesem Sigmamodell sollten sich die kritischen Exponenten fiir das
Skalenverhalten der Spin-Korrelationlange im multikritischen Punkt des RBI ent-
lang der Phasengrenze sowie entlang der sognannten ” Nishimori-Linie” ermitteln
lassen.
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Chapter 1

Introduction

1.1 Physical Motivation

1.1.1 The History of the Ising Model

At the beginning of this century the physics of mesoscopic condensed matter
systems — i.e. systems whose behavior is governed by quantum coherence over
scales that are larger than the system size — was rather a minor field. Most tools —
experimental as well as theoretical — necessary to investigate those systems were
not at hand. The dawning of quantum physics during the first quarter of the
century and the technological improvements thereby induced gave physicists the
necessary equipment to enter the mesoscopic world.

From the very start of this development the community was interested in
the description of the magnetic properties of the systems under consideration
and — quite naturally — the impact of quantization on those properties. Since it
was realized that the theories that would cover everyday experience were by far
too complicated to start with, physicists were focusing on simple ”toy” models.
Those either ignored forces of interacting particles or did other cruel things to the
underlying physics. But still these models were applicable to real physical systems
and produced even at times results that complied better with experiment than
any other theory before. The deeper reason for this is that for a wide range of
physical systems some of the observed quantities do not depend on the underlying
microscopical details, but only on universal symmetries.

One of these models was developed by E Ising in his 1925 PhD thesis [Isin 25]
and is nowadays widely known as the ”Ising model”. It describes Elementar-
magnete! on a square lattice that experience a coupling to their next neighbors
— interaction with elementary magnets on all other sites are ignored®. Since a

lgerm.: elementary magnets, nowadays identified with electron spins
’In fact, Ising gives already a qualitative argument for the physical justification for this
procedure.
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perfect lattice is assumed, the coupling constant is being kept constant over the
whole lattice. The Hamiltonian of this system is then:

H=-J>5:; (1.1)
(6.3)
where .S; denotes the spin operator for site ¢ and summation is assumed to range
over adjacent sites only.

This model was studied intensely in the subsequent years. Peierls proved in
1936 the existence of an ordered low-temperature phase [Peie 36| for d = 2. In
1941 Kramers and Wannier used transfer matrix and duality techniques to tackle
the Ising model [Kram 41]. Finally, in 1944, Onsager was able to calculate the
critical temperature and the free energy of the 2D Ising model thereby solving the
most fundamental questions. In the sequel their methods were improved and var-
ious other physical quantities were derived, e.g. the spontaneous magnetization
etc. In the 60s it was shown that — for dimension 4 and higher — a semi-classical
mean field theory produced exact solutions for the Ising model. There was (and
still is) no analytical solution to the 3D Ising models.

1.1.2 The Advent of Randomness

Realistic physical systems cannot be considered to be pure in any respect. This
fundamental fact was usually ignored by the theories of condensed matter systems
of the early days. Nevertheless the ever increasing precision of experimental
techniques made it necessary to incorporate impurity into the theories.

1968 McCoy and Wu introduced an Ising model that included impurity in-
duced disorder [McCo 68]. They allowed the coupling parameters between adja-
cent rows to fluctuate, i.e. the vertical paramters could take arbitrary values. At
the same time the horizontal coupling parameters were kept constant.

In the following years the interest focused on the random bond Ising model
(RBI), with random sign but constant modulus in the coupling parameter (binary
distribution). The probability distribution was then:

P(J”) :p(S(Jij—J)—i-(l—p) 5(JZJ—|—J) (1.2)

Here p is the probability to have positive J on bond (i, j). When we take a
closer look at the phase diagram we see that for the pure Ising system we have
a phase transistion from a ferromagnetic phase to a paramagnetic phase at finite
temperature T,. On the T' = 0 axis we find a quantum critical point at which we
have a spin-glass transition on the axis. Nishimori [Nish 81] was able to perform
an exact calculation of various physical quantities for this RBI on a line in the
phase diagram that was subsequently named after him. This Nishimori line is
given by tanh &= = 2p — 1. For the binary distribution (1.2) Nishimori arrives
at ((E)) = —N(N —1)(2p — 1)/2 as an expression of the internal energy. The
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Figure 1.1: Phase diagram for the RBI

renormalization flow ”above” the Nishimori line is directed towards the Ising
critical point, while below the line it points towards the quantum critical point
on the T' = 0 axis. This indicates domination of the ferromagnetic viz. the spin-
glass correlation. The intersection of the Nishimori line with the phase boundary
is expected to be a multicritical point.

Further research on the random-bond Ising model was done by Dotsenko and
Dotsenko [Dots 83], Shankar [Shan 87] and most recently by Singh and Adler
[Sing 96] and Cho and Fisher [Cho 97]. Binder and Young were able to give
a strong argument against a finite temperature spin-glass phase for the two-
dimensional model [Bind 86].

The (approximate) p-T phase diagram representing our current knowledge
on the RBI is given in figure 1.1. While we know a lot of the properties of the
Nishimori multicritical point, the critical exponents are still only vaguely known.
The major goal of this thesis is to take a further step towards a sigma model for
the RBI.

1.1.3 QHE and Network Models

When mapping the RBI onto a non-linear sigma model we will make use of a
network model. These type of models were developed in the framework of the
quantum Hall effect (QHE). To give some background we give a very short review
of their history.

In 1980 v. Klitzing et al. discovered some unusual behavior in 2D systems:
the Hall conductances o,, and o,, were no longer linear in the applied magnetic
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Figure 1.2: The Chalker-Coddington (CC) network model

field but seemed to be quantized. This phenomenon — the quantum Hall effect —
was easy to reproduce, but theorists had a hard time understanding the physics
of this effect. Among the first qualitative phenomenological ideas were Landau
levels with extended states only at the center of each level; later field theories
with topological terms followed.

A very remarkable ansatz to the problems of the QHE with disorder was pro-
posed by Chalker and Coddington [Chal 88]. The two-dimensional conducting
(square) lattice is modeled in the following way: Areas of higher and lower po-
tential — that are induced by disorder — form ”hills” and ”wells”. If the energy of
the electrons is still low they are confined to the wells and their ”guiding center”
moves on a deformed circle. When raising the energy to the point where the wells
are completely filled they touch (i.e. they come closer than the magnetic length
l.) and the electrons start to tunnel to adjacent wells thus percolating through the
system. This behavior is caricaturized by a network of squares whose boundaries
represent equipotential lines. A single line is usually called a link. On the links
the electrons can move in one direction. At the end of each link the electron has
to pass a node where it either continues to move along its current equipotential
line or it tunnels through to some adjacent equipotential (cf. figure 1.2).

The wavefunctions are now represented by complex numbers living on the
links. Randomness is incorporated in the following way: Each electron acquires
an Aharonov-Bohm phase when passing a certain link. The amount of phase
thus gained is proportional to the length of the link under consideration. When
associating random phases with the links, and thus random lengths, we can quite
naturally incorporate disorder into our model.
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Although this model simplifies the real system to a large extend, still it is very
hard to solve analytically. After some experience was gained about how to map
the CC model on a corresponding Dirac Hamiltonian or how to treat it in terms
of spin chains, the latest developments made it possible to map the problem on
a non-linear sigma model [Zirn 97].

In chapter 3 we will review the mapping of the RBI onto a CC-like network
model (cf. [Cho 97]) which in turn can be represented by a non-linear sigma
model. Randomness occurs in this effective network model not on the links but
on the nodes in terms of the sign of the coupling parameter. Dealing with the
randomness requires us to use the color-flavor transformation, which is derived
in chapter 2.

1.2 Mathematical Background

The key for the derivation of the sigma-model is the application of an integral
identity — the color-flavor transformation — between an integral defined on the
group manifold of the special orthogonal group in N dimensions — the SO(N)
— and an integral defined over the symmetric super-space of type CI|DIII®. A
self-contained introduction to integration theory over symmetric super-manifolds
is certainly beyond the scope of this thesis — a good starting point for this is
[Bere 87] and [Zirn 96b]. Furthermore we will make extensive use of the theory
of Lie groups and Lie algebras which is also not introduced here as well. For a
sound introduction to this field see [Helg 78]. We will look at some key definitions
and theorems of theory of Lie groups and super manifolds only as a means of
introducing our notation.

1.2.1 Lie Groups

Recall some definitions:

Definition 1.1 1. A Lie group s a group G which is also an analytic manifold
such that the mapping (0,7) — ot~ ', 0,7 € G of the product manifold

G x G into G 1is analytic.

2. Let g be a vector space over a field K with characteristic 0. g is called Lie
algebra if there exists a bilinear mapping [e,e] from g x g into g with the
following properties:

(a) [Xa Y] = _[YaX]
(8) [X, 1Y, 2]) + |2, [X, Y]] + Y,[2,X]] =0

3”CI” and "DIII” are two of Cartans symmetric spaces (cf. [Helg 78]); the classification for
some of the symmetric super-spaces is given in [Zirn 96b].
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To make a connection between Lie groups and algebras we have to introduce
the exponential mapping.

Definition 1.2 The mapping given by

00 Xk
exp:XHepr:Z—'
i k!

15 called the exponential mapping. X € g — a Lie algebra — is supposed to be
given in some matriz representation.

It can now be shown that with every Lie algebra comes at least one Lie
group corresponding to it. The classification of the Lie algebras and groups was
performed at the beginning of this century, mainly by E. Cartan. Again, this is
reviewed in [Helg 78|.

In order to integrate in the space of continous functions C(G) over the group
manifold G we need a measure. If G is compact or C is restricted to the continous

functions with compact support, we are guaranteed to have a so-called ”Haar-
measure” (cf. [Rich 81]) which is left-invariant, i.e. [, f(hg)dg = [s f(g9)dg.

1.2.2 Generalized Coherent States

In the proof of the central theorem of this thesis we will make extensive use of
so-called ”generalized coherent states”. Again we will introduce here only the
basic concepts of these objects. For a general introduction we refer to [Pere 86].
Let G be an arbitrary Lie group and T} its unitary irreducible representation
acting on the Hilbert space H. Choose some state |0) in that Hilbert space
and consider then states |g) = T,|0). Take H to be the maximal subgroup of
G, whose elements satisfy T5|0) = |0) exp (ic(h)) (o denotes here some complex
valued function of h). H is then referred to as the ”isotropy subgroup” of G.

Definition 1.3 The system of states {|g) : |g) = T4|0)}, where g are elements of
the Lie group G, T is an unitary irreducible representation of G acting on some
Hilbert space H and |0) is a fixed vector of that space, is called the coherent state
system {T',|0)}.

Let H be the isotropy subgroup for T, i.e. the maximal subgroup that leaves an
generalized coherent state unchanged besides an arbitrary factor. Then a coherent
state |g) with g € G is determined by a point x = 7(g) € G/H — the coset space
of G and H — by |g) = exp (ia(h)) |w(g)). 7 is here the canonical mapping from
the fiber bundle G onto its base G/H.

Among the most important properties of the coherent states we have the fact
that they resolve the identity operator due to the irreducibility of the represen-
tation of G on H. This can be seen as follows:
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On every Lie group G there exists a left invariant measure dg, called the
”Haar measure” (s.a.). It induces a measure dz on the (homogeneous) coset
space X = G/H. Let us consider the operator

B = /dw\x)(w\ re X=G/H

assuming convergence. It is quite easy to see that TgBT;1 = B, i.e. that B
commutes with every T, and must therefore be a multiple of the identity operator
according to Schur’s lemma. We can write then B = ¢ - I. To fix ¢ calculate the
expectation value with an arbitrary normalized * state |g):

(9|Blg) = / (g|z)2dz = / (0] [2de = d

To arrive at the promised resolution of unity we have to adjust our measure
dz by introducing a new factor d': du(z) = dx - d~'. With this measure we
have:

1= [ du(@)lz)a] (1.3)

1.2.3 Super-Analysis

A good introduction to super-analysis is given by [Efet 83] and [Bere 87]. Here we
will recall some basics on Grassmanian (also known as fermionic) variables and
the generalization of standard differential geometry to super-spaces. We start
with the definition of Grassmann numbers:

Definition 1.4 Let &, be n distinct objects obeying the anti-commutation rule:

{&, &} =&& +66=0
These objects are the (free) generators of the Grassmann algebra A.

Remarks:

1. Tt is quite important to note that the square of a generator vanishes. The
elements of A can then be written as:

/’7 — Z fil..-ingiﬂ_(l) . gi,r(n)
K
The sum is understood to run over all permutations of the indices, whereas
the f are c-numbers. Taylor expansion stops therefore at finite order — for
one generator this means that the series has a cut-off even at first order.

‘e (glg) =1
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2. Elements with an even number of Grassmann generators do actually com-
mute. We can now define a parity for those elements of the algebra that
have either an even or an odd number of generators in the following way:
To those numbers that are composed of commuting elements only we assign
parity 0, whereas the purely anti-commuting elements are assigned parity
1. This induces canonically a Z, grading. Parity p elements span the space
A, in such a way that we have for the whole Grassmann algebra:

A - AO + A1
3. The differentiation is defined just like ordinary differentiation with the ex-

ception that it is possible to define left and right derivatives due to the
anti-commuting property of the Grassmann numbers.

4. We can also define integration over the Grassmann variables. The two types
of integrals possible are then defined to be:

[ds=0  [dag =0,

A closer examination of the defining equations shows that integration and
differentiation are just the same. We therefore get:

/(%)dgif(gl,...,gn) — f(1,1,...,1)
For a change in the integration variables we get from the above relations:
[ def(e) = devA* [ ang(An), for € = Ay
and
[ s = [ g +m).

One of the reasons to consider integration of Grassmann variables is the fre-
quent occurrence of Gaussian integrals over Grassmann and super-vectors. Those
integrals can be transformed — just like in the case of commuting variables — into
determinants. We have

e for commuting (”bosonic”) variables:

//\ dz' A dZ exp (—Z;Aij2;) = det TA
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e for anti-commuting (”fermionic”) variables:
[ ®dti® déexp (~E4ij6;) = deta

More important, arbitrary matrix elements can be expressed in terms of super-
integrals. This is done by application of the above formulas. Thus we get:

/Di/J D o; 51 €XP (—1/_11A1J1/1J) = A o)) SDetA

An even more general formula for the expression of matrix elements by super-
Gauss integrals is proved in appendix D.

It is now possible to consider ”super-manifolds”. These manifolds are defined
to be locally the tensor product of the algebra of analytic functions over an open
subset U C R"™ with some Grassmann algebra A. This is described in [Bere 87].
It turns out that some of these super-manifolds — the Riemannian symmetric ones
— correspond to physical universality classes. They are examined in the light of
their physical relevance in a recent paper [Zirn 96b).

The super-manifold under consideration is a coset space of the ortho-symplec-
tic super-group Osp(2n|2n) and the general linear super-group Gl(n|n). These
super-groups and their corresponding group manifolds can be represented by
(2n + 2n) X (2n + 2n) viz. (n + n) X (n + n) super-matrices. Consider for
example the Osp representation: Take 4n X 4n matrices and block-decompose
goo go1

Jgio 91
bosons and fermions, i.e. the goo and g1 correspond to the BB and FF block

respectively. They have therefore c-numbers as elements. The off-diagonal blocks
have Grassmann numbers as entries.

During the proof of the color-flavor transformation in chapter 2 we will per-
form a ”second quantization” and thus encounter super-Fock spaces. They can
be thought of as the usual Fock spaces, but this time bosons as well as fermions
can be created or destroyed. The super-creators and super-annihilators that act
on the super-Fock space are labeled ¢ viz. ¢, where i is some ”color” index and
A is a "flavor” index, discriminating bosons and fermions. The reason for this
naming scheme as well as the range of the indices will become clear during the
proof.

them into 2n x 2n blocks: g = ( > This grading is taken to be in
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Chapter 2

Color-Flavor Transformation

In this chapter we will prove the following remarkable identity:

Theorem 2.1 The following equation holds (using the quantities defined below):

/ 40 exp (#0993 = / Dun(Z, Z) exp (34245l + Vs Zasdls) +
SO(N)
+ /DMN(Z7 Z) exp (wﬁzﬁéwg + 77bj¢iZ121(e,F)77&26,F’) + wze.F)Z(e,F)lg'w]z@ +
+ 0421505 + Vi Z 400 5y Pler) + Ve Do,y 5Y5)
(2.1)

This equation relates an integral which is defined over the special orthogo-
nal group in N dimensions to a sum of two integrals which are defined over a
symmetric super-space of class (CI|DIII). The upper index i — also sometimes re-
ferred to as ”color” index! — has range 1,..., N. The lower — or "flavor” — index
A is a multi-index (a,0) with a = 1,...,n and o takes values in {B, F'}. Here
n is arbitrary, but usually dictated by the physical application. Flavor indices A
with a hat are supposed to run over the whole range but (e, F). The reason for
excluding this very entry and performing a creator/annihilator exchange is given
in the subsequent derivation of the theorem. The 9 s and v s are super-variables,
i.e. can be written in terms of c-numbers and Grassmann numbers, depending
on the value of ¢ in the flavor index. While O are simply elements of the SO(N)
and dO is the usual left invariant Haar measure on the Lie group, the Z and Z
super-matrices parameterize the coset space (CI|DIII). Duy is the normalized
measure on the coset space, given by:

Dun(Z,Z) = D(Z,%) SDet(1 — ZZ)™V

'Integrals similar to the left-hand side appear sometimes in lattice-gauge theory. There, 1
corresponds to quarks, while the O s are similar to color-carrying gluons.

11
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where D(Z,Z) denotes the "flat” Berezin measure?.

2.1 Preliminaries

In order to prove identity (2.1) we consider two vector spaces V and W — CV
and ¢ respectively. These spaces will be referred to as physical or color
space viz. auxiliary or flavor space. The auxiliary space is a Zs graded sum
of a bosonic space Wi = C*" and a fermionic space Wy = C*, ie. W =
Wg & Wgr. We will later utilize the Gaussian Berezin integral over the symmetric
Riemannian super-space Hom, (V, W) x Homj;(W, V') where Hom, (W, V) e ®
Hom(Wg,V) 4+ A\ @ Hom(Wr, V) with A = A\g + A; the Grassmann algebra with
N = dimgp (Hom(Wg,V')) generators.

Since our final goal is to integrate over the SO(N) and transform this into an
integral over the Osp(2n|2n)/Gl(n|n) coset space, we have to relate them in some
way. We will do this by relating their corresponding algebras.

If we now consider elements v, 12 of the spaces of homomorphisms from W to V'
viz. V to W, we will use them to construct endomorphisms in W and V' by simple
concatenation. To force the proper group structure on these endomorphisms we
have to put constraints on their form. In matrix representation this is usually
done by requiring the algebra elements to fulfill some condition like

AT+ TAT=0 & A=—gATJ! (2.2)

for all elements A of the algebra under consideration. In our case the (-)7
denotes the usual matrix transposition or super transposition for the so(N) viz.
the osp(2n,2n). Using now our homomorphisms we can model the algebras they
belong to by imposing proper constraints on them:

¥) = —(@y)Ty € End(W)
Y

(&
$) = —C(Y)"C € End(V) (23)

(

To force End(V') to be an so(N) algebra we simply set C = 1y. But this
already puts a constraint on -y, since:

o= Wy Y = —Cyryre
— (ye) (cd™r ) = —(cg™r) (e

A proper choice for ¢ and ¢ is then:

?For further details see [Zirn 96b] and [Roth 87]. It is important to note that this relation
is only locally valid. When defining a global measure, so-called "anomalies” (aka. boundary
terms) arise which one has to take into account.
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b=—ypfct p=Ccylyt (2.4)

We proceed by using this relation to get some condition for +:

o= iy
= (W) 4t
(e L v
————

:]1 , since C = ]1
= —yoyTy !
Thus we arrive at:
v=-—"o (2.5)

As already noted above o is the superparity diag(ls,, —1s,). With this

constraint in mind we can choose v to be:

1, 0 O

B 0 0

= 0 1,
1

0
-1,
0

0 n 0

0
0
0
In [Bere 87] the osp(2n,2n) is defined to fulfill (2.2) with this v (as J)3.

The two algebras occuring — so(N) and osp(2n,2n) — can now be represented
in second quantized form by creator/annihilators pairs (cf. lemma A.1):

Definition 2.1 1. The generators of the osp(2n,2n) can be written as

BU=hbh o FU=Lf o GU=RA
By =4 (b +0ibL) EP =1 (fifi — Fifi) G”zbez G = b i
Bab Z Z Fab = f;fg ab - fb

Sometimes they will be referred to as color singlet or flavor operators Co.

2. The generators of the so(N) algebra can be represented by
P =B W+ Pt + S

They will be referrred to as flavor singlet or color operators.

3In fact, Berezin chose J to have simply 1, in the FF sector instead of o, ® 1,,. A simple
calculation shows that nothing is changed, as can also be seen from the commutators of the
osp(2n,2n) generators in the FF sector.
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2.2 The osp(2n,2n) and the Flavor Sector

The principle idea in the following proof of the color-flavor transformation is to
show the equality of two different projectors on the flavor sector?. The first way
to describe the flavor sector is given by the very definition of it: Being the part
of the super-Fock space that gets annihilated by the flavor singlet operators Fid,
On the other hand we will show that the flavor sector is completely covered by
acting with the color singlet operators, which form an osp(2n,2n) algebra, on the
vacuum state |0) and on the Fermi-baryonic® state F{?)|0). The baryonic state is
defined to have one fermion of every color, but all with the same flavorS:

Fgl0) == fi...fY]0)

A crucial difference to [Zirn 96a] is that the flavor sector decomposes into
two parts — the vacuum and the baryonic subsector — each of which cannot be
reached by a multiple action of the osp(2n,2n) onto their states. This was already
shown for the large N limit in [Zirn 96b| by using the saddle-point approximation
and thus anticipated to hold also for arbitrary N. The deeper reason behind
this is the existence of another invariant tensor for the SO(N), namely the total
antisymmetric tensor in N dimensions: ev,

The form of the generators of the so(N) and the osp(2n,2n) respectively is
derived in the appendix.

To show that osp(2n,2n) acts irreducibly on each of the two subsectors of
the flavor sector we will take three steps: First we will show that the vacuum
and the baryonic state are elements of the flavor sector. Then we are going to
show that the color singlet operators (i.e. the osp generators) and the flavor
singlet operators commute. This shows that at least all osp(2n,2n) generated
states are in fact color neutral. The last thing to prove is the non-existence of
further states. This will be achieved by using the tensor-space representation of
the so(N), limiting the flavor states (defined through the flavor singlet operator)
to those that can be reached by multiple osp(2n,2n) action onto the vacuum and
the baryonic state. It is the last step, where the additional invariant tensor enters
the game. Obviously, when switching from the SO(N) to the O(N) this tensor no
longer occurs.

2.2.1 The Flavor Sector

We start with a definition of some ingredients that will play a crucial role in our
investigation:

4The flavor sector is a subspace of the super-Fock space. It will be defined immediately.

5We use the term ”baryonic” since every flavor occurs in the state under consideration, just
like every color occurs in the case of the constituting quarks in the hadrons.

6Tt will be shown that the flavor is of no importance.
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Definition 2.2 Let us consider a super-Fock space with vacuum |0), selected by’
c4|0) = 0. The set of elements of the Fock space that vanishes under action of
the so(N) generator — the flavor singlet operator Fii — s called the color neutral
or flavor sector. Elements of this sector will sometimes be denoted as |flavor).

Remark: The flavor sector is actually the key to the whole proof given here.
We will construct a projector on that very sector in two different ways and show
that these projectors are identical.

The first thing to prove is that the vacuum |0) and the baryonic state FZ|0)
actually get killed by the flavor singlet operators:

Lemma 2.1 The vacuum state |0) and the Fermi-baryonic state F’(E)|0> are ele-
ments of the flavor sector:

F”‘O) =0 and F”F(g)’(D =0 folr all Z?] =1...N

Proof: When acting with F onto |0) we get:

F910) = I0b, — bbl+ fafl + fafll0)
= —n-0Y+mn.6%
=0

The second equality sign stems from the fact that for ¢ # j the creators and
annihilators trivially commute viz. anti-commute, whereas for ¢ = j the constants
arising from the exchange of the Bose and Fermi operators cancel exactly. For
the Fermi-baryonic state we have:

FiEBI0) = 3 (Bflbg — b+ fifI féfg) (fbl : --fzfv) 0)
= (0—n-89+487+(n—1)-67)0)
=0

Here we have applied the same idea as above. We still have to show that the
flavor of the Fermi-baryonic state plays no role. This is established as soon as
we can show that there is no problem in getting from F(E) to F(f) by a multiple
action of the osp(2n,2n) generators:

"Here — as everywhere else — ¢}, denotes the annihilator for a particle of color i and flavor
A, where A is a multi-index (a,0), a = 1,...,N and ¢ € {B, F}. Naming and range of the
indices is the same for the corresponding creator ¢ .
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FYEGI0) = L(fifi— Fif) fL... FN)0)

= (F72. FN+ .+ Th FYLY) o)
F,?F,?F(E) — ( N+ RN+
f2 o N+ R N+

RN TR )
Thus we arrive finally at:

_ 1 N _—
B _ b B
oy =57 (F2)" Fglo). o
In the following theorem we show by a simple argument that there is no way
to arrive at the baryonic state by any multiple action of the osp(2n,2n) generators

on the vacuum state and vice versa.

Theorem 2.2 The flavor sector decomposes into at least two unconnected sets
of states. In the one part lies the vacuum whereas the other contains the baryonic
Fermi states. Neither of these parts can be reached by a multiple action of the
osp(2n,2n) on an arbitrary state of the other.

Proof: Each of the color singlet operators can create or destroy only pairs of

particles with the same color or change the flavor of particles but not their color.
(I

To continue our program we have to prove the following lemma:

Lemma 2.2 The generators of the osp(2n,2n) super-algebra commaute with the
flavor singlet operator, i.e.

Vi,je{l,...,NWa,be {1,...,n} : [F7 Cop] =0 (2.6)
Proof: To prove this relation we simply calculate the commutators:

(B, o] — > bibIDEDE — bibiDkbE — DEDEDE + bEDEbIDS

=S OREIBE + SN — SIS — SN
k,c

acc bec Ycva ac’c bcYcYa

[ﬁ’ij’Bab] = 0 (simile)
[F,BY) = & BLbIbAE + BibiBE — bibibEDE — bibibkbE
k

ZBRBEBbI — BEBEBIDS + BEBEDID + BEDEDIDS

a“c’c a“c’c

= 5 —OkbIbf + 6, OEDL + 615bibE — 6ikbEbL — SIEBED:
k,c

bec Ya"c

+OikBIbE — GRBIbE 4 GIRBED
= 0
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The calculations for the pure fermionic and the mixed generators are very
similar and will thus be omitted. O

2.2.2 The Tensor Space Representation of the SO(N)

To deal with the definition of the flavor sector we will now use the tensor space
representation of the SO(N). Thus we can characterize the color neutral state
using invariant tensors of the SO(N). A general introduction to this method is
given in [Tung 85]. We can summarize the ideas as follows:

The most arbitrary state of the Fock space can be described in terms of:

state) = S Fiiz-ie, gt e |0)

If R € SO(N) is now a rotation in color space, such a state transforms as a
number of copies of the vector representation &, — 3 RY&,. If |state) is now
supposed to be color-neutral, then F|state> = 0 has to hold by definition. But
this means that Ffflij;:f“Ak has to be composed of SO(N) invariant tensors in the
color indices only.

For the SO(N) there are two relevant types of invariant tensors® (cf.
[Tung 85]):

1. The tensor £¥ given by the metric being kept invariant by the SO(N). Since
we are dealing with a positive definite metric this tensor can be written in
matrix form by £ = 1y.

2. The total anti-symmetric tensor of rank N, €**¥. This tensor guarantees
that the elements of the SO(N) preserve the orientation, i.e. that the de-
terminant of the orthogonal transformation is +1, as required by the virtue
of it being a ”special” group.

8 Another invariant tensor is — quite naturally — the § tensor. But this tensor is only of minor
importance; its role for the G1(N) is here being played by £. For a detailed discussion compare
[Tung 85], ch. 13.
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2.2.3 A Simple Example

Let us now see what happens in a low-dimensional example:
Example: The so(2) and the osp(2,2)

The osp(2,2) generators are summarized in this table:
2 2
Bll — szbz Fll — 0 Gll Z bzfz
i=1 =1
2 — . 2 . _ 2 .,
B%:%szbz+blbl Fllzézfzfz_fzfz G%: szfz
i=1 i=1 i=1
2 ~ 2 .
By = Y b Fi,=0 Gi =Y bft
i=1 i=1
2
Gll — ; b’Lfl
The flavor states are:

Bavor) = 3 fon.oy, (W) ... 28 pir0ine) sz
™

where 7 € So, p € {£, €} and f,,. 4, (7) is an arbitrary factor. If
we now have states with more than one anti-symmetric tensor in the
representation above, something very interesting happens: Each pair
of e-tensors can be represented in terms of some £-tensors:

€ijek:l — gikgjl o é-ilé-jk (27)
This equality is obtained by proper contraction from the well
known fact that the product of a full antisymmetric co- and a full
antisymmetric contravariant tensor can be expressed in terms of the
unit tensor 9. By this fact we can restrict ourselves to the case with
none or one anti-symmetric tensor being present in the representation.
Applying this to our states we arrive at the following 2-particle
states in the color neutral sector:

) L(BY5? — 5%5") [0) = 0
o' f* +b” f2]0) L(BF2 - B2 1) |0) (2.8)
PR+ P20y =0 §(F172 = FP7Y) = |0) = 3FZ)0)

It is not difficult to see that the states on the right hand side
are reachable from the baryonic state, whereas the states on the left
hand side are generated by multiple action on the vacuum. There
is no possibility to reach a state on the left from the right and vice
versa by any osp action. When we consider higher-particle states we
observe the same behavior.
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This simple example illustrates the principal idea behind the tensor-space
representation and gives us some idea of how to relate it to the algebraic repre-
sentation of the flavor sector in higher dimensions.

2.2.4 The Irreducibility Theorem

The generalization of (2.7) to dimensions N > 2 is now crucial for the further
proceedings. It is achieved by the following lemma:

Lemma 2.3 The product of two anti-symmetric tensors can be written in terms
of linear combinations of products of the metric:

é‘iljl . é’iljk
611...zk6]1...jk — . . :

(2.9)

é'ikjl é”iNjk

Proof: By acting with §; k-times on €~ we get the covariant tensor e... We
can then apply the fact (cf. [Sexl 76] for a proof) that

Eil...iNejlij = (5;1;11\(]
and use £¥ afterwards on §;1%" to arrive at the statement above. O
Thus the final ingredient is no longer difficult to prove:

Lemma 2.4 The elements of the flavor sector can be written in tensor space
representation in the following form:

flavor) = 3 fa,. ay, (1)Em@ie)  gin@-nirengl g2 |0)
or
|ﬁavor) = Z Z fA1~~~A2k;+N (W)giﬂ(l)iW(Z) . giw(zk—l)mw(%)Ei2k+1"'i2k+N %

—i1 —dok =i2k41 _log+N
XCh, o Chn Canir, - a0 10)

(2.10)

Remark: As soon as there are two or more bosons of same flavor among the
generators that we contracted with the € tensor, the whole expression vanishes,
of course.

Proof: Since & and € are the only relevant invariant tensors, all elements of
the flavor sector (i.e. those elements of the Fock space that are invariant under
SO(N) rotations) can be written in terms of the invariant tensors of this group,
as indicated above. O

We finally arrive at the following theorem:

Theorem 2.3 (Irreducibility Theorem) The generators of the osp(2n,2n) al-
gebra act irreducibly on each of the disconnected subsectors of the flavor sector.
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Proof: This theorem can now easily be proven by collecting our lemmata and
noting that

Y&k ... Gt | i) (2.11)

can be reached by multiple action of &,&,6% (which is then B®, F% or G,
respectively) on the vacuum. Elements of the form

SoE, Ak, e gk fn o) (2.12)
can now also be reached by multiple osp(2n,2n) action through:

1. If Ok+1 = ++.. = O4N = F' then
Fgsr  Fan FR0)

where F’(lj) denotes the Fermi baryonic state with flavor a.

2. If (without loss of generality) o1 = B and og12 = ... = 0pyny = F then

GariFgesr  Fos BB |0) (2.13)
yields the right state.

3. For 041 = 0gy2 = B and op.3 = ... = ox.ny = F we have to look closer
at the flavor of our bosons: If now a; = ay the state is killed. This can be
proven by calculating the multiple action of G§Gj. For a; # as we arrive
at:

Gor+1 Garr Favrs . F+n BB |0)

This result can be understood quite intuitively: Having more than one
boson (i.e. commuting operator) of the same type coupled to the total
anti-symmetric tensor means that the whole tensor must vanish.

This scheme can be trivially enlarged to a larger count of bosons. However it
is important to stress that as soon as there are two or more bosons of the same
flavor present the whole state vanishes. This reproduces precisely the behavior
of the € tensor. The creators not coupled to € are taken care of by — as above —
the metric tensor. O

Remark: Since every state of each of the parts of the flavor sector can be
written as described in (2.11, 2.12, 2.13) it is easy to see that we can reach the
vacuum |0) viz. the Fermi-baryonic state F(‘g)|0) quite naturally by acting with
the corresponding ”inverses” on these states, i.e. with By, on B®, B¢ on B? and
so forth. Thereby we can reach every state of each of the two parts by a multiple
action of color singlet operators on some ”start” state.
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2.3 Construction of the Projector

2.3.1 The Action of Osp(2n|2n)

In order to obtain our generalized coherent states we have to define an action of
the Osp(2n|2n) on our Fock space. This action must actually be a Lie supergroup
homomorphism. Since our flavor sector decomposes into two unconnected parts
we have the freedom to choose different actions on them. To ease notation we
will change the block structure of the matrices representing the elements of the

A B
C D
the BB-sector etc., we will now order the elements so that A represents the éc
sector, B the ¢c¢ sector, C' the cc sector, and finally D the c¢ sector. We then
define the action T; on the subsector containing the vacuum:

group viz. algebra. While until now we had g = with A representing

19 = exp {&,(In A) apcy + €4 (In B) apTl + ¢4 (In C) apcls + ¢4 (In D) 4525 }

whereas the action Tf on the other subsector that contains the baryonic Fermi
states is going to be:

TgB = exp {Eii(ln A) 155 + &4 (ln A)A(e,F)de,F)
n

/.:“
=]
e
.
S
O
_l’_
WO
/,:
=]
37
2
’11
AL
('b
3

JFC(e F) (In C) (e,F)B + C( )(ln O)(e,F)(e»F)Efe,F)
(lnD) iBCx +c (lnD)A( 7)Ce,F)

err
( )(ln D)(e F)B B ( F) (ln D) )(evF)CzeaF)}

The difference between T, and T,” lies in the role of the fermion annihilators
of flavor e: In the vacuum subsector they are actually just the ordinary fermion
annihilators while in the subsector containing F(’g)|0) they act like hole-creators

and are thus treated on an equal footing with the other fermion creators fi. A
viz. a denotes here the flavor indices that cover the complete flavor range except
those fermions viz. particles with flavor e.

The well-definedness of the logarithm of a general element of the Gl(n|n) was
shown in [Zirn 96a]. The same argument applies here mutatis mutandi.

Lemma 2.5 The mapping g — T, is on both subsectors a super-group homomor-
phism.
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Proof: From [Helg 78] we learn that — for the differential of the exponential
mapping from any Lie algebra to the corresponding Lie group — we have:

1 — e-adX)
d €XPx = dLepr(e) o W
X +tX x1=e 240 X) = X T (X
— t = =
& - tZOeXp{ +tX} = e () (X) == X Tx(X)

This formula extends easily to super-groups — here Osp(2n|2n); the set where

Tx ! is well-defined is dense in the super-group. We continue setting g = exp X,
h(t) = exptY € Osp(2n|2n):

d d
Y Toh ) — 7 Te(; X) exp(tY
dt . gh(t) dt o p(X) exp(tY)
_ d 0
- % —o exp(X+T};l(tY))
d ) — (11) i
= | e [CA (X + TXl(tY)) 5 OB

y . an
€xp [CA Tx oTx l(tY))AB CB

t=0
+2, (Tx o Tgl(tY))S: &,
+cy (T o T (2Y))

+c4 (TX o Tgl(tY))(QZ)] o
d

00
7 ToTho

t=0

The homomorphism T;) on the vacuum subsector is thus — after integration —
established. Since the form of the creator/annihilator pairs does not enter this
proof it applies without substantial change to 7,0 °.00

9To make this plausible, note that Lemma A.1 applies to any combination of creators and
annihilators.
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2.3.2 Construction of the Projector P

The Isotropy Subgroup K According to [Zirn 96b] K = Gl(n|n) is the
isotropy subgroup of the ortho-symplectic group we will integrate over. A possi-
ble representation for this subgroup is the group of matrices k = diag(A, A™'7).
The action of these elements stabilizes the vacuum, as expected:

TPN0) = exp (¢h(1nA)apch + cy(In A7) 4nc}) |0)
= mwm>—N§]mAAme
A

|0) exp ( STr ln(AT)’N)
= |0) SDet A™N
= 10) (k)

Here p(h) is a one-dimensional representation of the Gl(n|n). In the same
way we get:

_1 _
O (T9) " =u' (k) (0] (k€ K)
The same has to be true for the baryonic subsector as well:
Thgaa-1m F10) = F|0)SDet A=~
and also:

<O|F(§)Tdiag(A,A*1 T) = SDetAN<O|F(l:) .

The Parameterization of the Coset Space Now we need a parameterization
of the coset space G/K. This can be done in terms of two supermatrices Z, Z.
We start with a characterization of the gH = @ € G/K in terms of the g € G.
Taking Y, = 0, ® 1y, we have:

Tig—Q=g¢%,9" (2.14)
a canonical projector from G to G/ K, since k commutes with 3,:
kY, =%k & X =kS, k!

Assuming now the elements of G to be written in the creator/annihilator
block decomposition already introduced

A B
GBgz(C D)
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we take Z = BD™' and Z = CA~" and arrive at the Gaussian decomposition
of g:

o= (23)(2 5)(25)
_ ((A+BD'C)(A-BD 'C) ! —2B(D - CA'B)!
( 2C(A-BDC)™ —(D+CA'B)(D—-CA'B) ! )

(290G

We decompose now g = s(m(g))h(g) with 7 the projector above and s :
G/K — @G a section of the bundle G over G/K. This section can then be
represented as:

- (1-22)" zZQ-22)"
$(2,2) = ( Z(1- 22" (1-Zz) )

- (% i)(ﬂ_oZZ)% (1—22%)(% g)

This decomposition is said to ”fix a gauge” in the following sense: When
thinking of G as a fiber bundle with base G/K and fiber K, then 7 is the canonical
projection from the fiber space onto the base. Now G can be seen as the field
space of a gauge theory with a gauge group K. "Fixing the gauge” means then
that we separate the unphysical gauge degrees of freedom from the physical ones
over which we want to integrate. This can be achieved by choosing a smooth
map s : G/K — G in such a way that m o s = id. s distinguishes then some
submanifold M C G which is then (locally) isomorphic to G/K.

We obtain the action — which is in fact an operator on F — of the Osp(2n|2n)
on the Fock space by exponentiating the product of the block matrices with some
bilinear combination of the super-creators and annihilators:

Ty = T o\T) i T/
s(m(g)) ((1) f) (1n(1+zoz)+1/2 ln(1+Z~0Z)71/2) (% rl))
. . .1 ~ .
= exp (EQZABélB) exp <5LA§ In(l — ZZ) spcy—
.1 ~ : . .
—cf4§ In(1 — ZZ)ABE’B> exp (CQZABCE)

For the baryonic action we get in the same way:
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X exp% {Efa (n(1-22)) ¢+ (In(1 - ZZ))A(&F) fit
+ fiuy (In(1 - ZZ))( i ¢+ f (1n(1 - ZZ))( . f} x
xexp{ ZABC + 32 eFfZ+fl (e.7)BCR "’fZeF)(eF)f‘}

When acting with T0 on the vacuum |0) and T2 on the Fermi-baryonic state
F{)|0) we arrive at a set of generalized coherent states'® |Z)q and |Z)p, as can
be seen by expansion in power series.

N/2 def

T, |00 = exp(¢4Zapty)[0) SDet (1 22)"" ¥ |2),
0 = AR i 7 i\ def
0I5, = SDet (1—ZZ) (0] exp (_CAZABCB) el 7]
sz,z)p(fﬂm = exp (EQZAB?,; + & Z 5y fe + [iZo pyaCit
+fi Zeryen [L) x FE 0)SDet (1 _ ZZ) N2 det ) 7y
(O[FBTTD L = SDet (1—22) (0| FE exp< ¢ Z a0 — 3 D30 Fim

£i 77 i Q77 def
_er(e,F)BC,; — feZ(e,F)e,F) fe) = B(Z’
We are now ready to define the projector P on the flavor sector:
p DgyT3|0)(0/T8 " + [ DgnTP FEI0OFETY " (215
o DI04 [ DauTfF[0)(0 (2.15)

Theorem 2.4 The projector P in (2.15) is identical to unity on the flavor sector
and vanishes elsewhere. Hence P projects the super-Fock space onto the flavor
sector.

Proof: Due to the translation invariance of the integration measure under
gH — gogH (cf. [Zirn 96a]) we have:

Ty Pt = /DgHTgng|state><state|Tg_1
= /DgHTgOg]state) (state|T, *
_ -1
= /DgHTg|state)(state|Tgo_19
= /DgHTg\state) (state|T, 'Ty, = P**T,,

where |state) is in {|0),FB|0)}. Since the action of the Osp on each of the
subsectors of the flavor sector is irreducible and every Ty, commutes with its

10¢f. [Pere 86]
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corresponding P*** we have then by Schur’s lemma that each P** is a projec-
tor on its subsector proportional to the identity on this very subsector and zero
elsewhere. Thus the sum P = P° + P® is a projector on the flavor sector. To
calculate now the constant of proportionality we continue as follows:

By taking Tg = Ts(ﬂ-(g))Tk(g) we get

T,|state) = Ts_(())Tk(g>lstate> = Tun(o Istate) u (k(g))
(state|T, Lk (9)) (state|T; )

and thus

T, |state) (state| T, ' = Ty(n(q))|state) (state|Ts_(71r(g)) . (2.16)

which lets us arrive at

P /DgHT£|0><0|T£’1 n /DgHTgB’FB|O)(O|FBTf’1

- - 2.17
= [D(2,2)12)00(2] + [ D(2,2)12)5 5(2]. (210

By calculation of the vacuum and baryonic expectation value we can extract
the constant of proportionality.

(0P|0) = /D Z)(012)0 0(Z|0) = /D(Z, Z) SDet(1 — ZZ)N
= [ Dun(Z Z) =1

(O|FFPFF|0) = [ D(Z, Z)<0!FB\Z>BB< JF \0>

Obviously the expectation value of P° vanishes on the baryonic subsector
whereas P? yields zero expectation value on the vacuum subsector. Therefore
we can conclude that P is actually the identity on the flavor sector. Since the gen-
eralized coherent states are color singlet ... (Z| vanishes outside its subsector
—cf. lemma 2.2. O

2.3.3 The Bose-Fermi Coherent States

The Bose-Fermi coherent states are defined as being generated by exp (¢4vY).
Here the v’s are super-variables, that are supposed to fulfill the usual super-
commutation relations:

cyhy = (-1l



2.3. CONSTRUCTION OF THE PROJECTOR 27

The states generated thus from the vacuum obviously cover the entire Fock
space. In fact they form the Grassmann envelope (cf. [Bere 87]) of the Z, graded
space of bosonic and fermionic many-particle states.

These states can be easily projected on our flavor sector by means of orthog-
onal rotations &, — O%¢Y in color space. Averaging over all such rotations we
arrive at a representation of the projector P on the flavor space!!:

Pexp (¢404) 10) = |

SO(N

) dO exp (092, ) |0) (2.18)

Here dO is the (translation invariant) Haar-measure on the special orthogonal
group (cf. [Rich 81]). To see that (2.18) is true consider the following:

Take T}, = exp {(ln O)ijﬁij} and write then'?:
P exp (40 0) = / dOT? exp &,3,]0) (2.19)
SO(N)
We have then if |state) € {|flavor)}:

P|flavor) = |flavor),

since this is true for each T}, |flavor) = |flavor). For an arbitrary state |state)
and Tj = exp{s - F¥/} by the translation invariance of dO:

P|state) = T5P|state)
and after differentiation by s:
FiiP|state) = 0

thereby proving that P is really a projector onto the flavor sector.

In fact, this is actually a way to define this projector.
12This equality is proven in detail in appendix C.
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2.4 The Proof

As we now have the two expressions for the projector at hand we can finally prove
the color-flavor transformation (2.1):

/so(N) 10 o (7,520"%3;1)
= o 20 Olexp (Fich) exp (Z10903) [0)
= (0] exp (Pycy ) P exp (E4¢4) 0)
= Olexw () ([ D2, 2)12)00(2) + [ D(2,2)2)5 8(21) %
x exp (9 ) [0)
= /D,uN(Z, Z) (0] exp (7%402) exp <éf4ZABE%) |0)(0| exp <—CQZABC§3) X
x exp (&4 ) [0) +
+/ Dun(Z,7) (0] exp <7,Zf46f4) exp (EZZABE% + E%ZA(&F)J”Z,' + ng(e,F)BE%) X
XF(E)\())(O‘F(E) exp (CiAZABC%» + CfleA(e,F)fz + ﬁZ(e,F)BC%) exp (¢4%%) |0)
= /DMN(Za Z) exp @ZZAB%} + ¢ZZABWB) +
+ /DMN(Za 2) exp <1Z_)ZZABJ)% + J}iizfl(e,F)wée,F) + wée.F)Z(e,F)B’J)iB +

+ 05 Zapts + ViZiemWiem +t Veom Zempty) O
(2.20)



Chapter 3

Random Bond Ising Model

In this chapter we will derive a non-linear sigma model for the random-bond
Ising model. This is achieved by mapping the RBI onto a network model which
is similar to the Chalker-Coddington model. Taking the continuum limit of the
network model we would arrive at the non-linear sigma model.

3.1 The Network Model

In this section we give a brief review of how to arrive at the network model.
This procedure was outlined in an article by Cho and Fisher [Cho 97]. More
information can be gained from this paper and from [Ho 96] and [Lee 94].

We start with an interaction Hamiltonian similar to the classical 2D Ising
model:

(,4)

The coupling constant for the link (4, ), J;;, can have a positive or a nega-
tive sign while the absolute value of J is the same for all links. By taking an
anisotropic continuum limit in one direction (which is referred to as the ”time”
direction; cf. [Kogu 79]) we arrive at a 1D time-continuum equivalent represen-
tation:

1 3.3
H = Z 110y, + 120,05, 4

A change in the signs of all J;; in the Hamiltonian (3.1) corresponds to a
change of sign for ¢; 5. Thus setting ¢« = ¢(n,7) — making it a function of space
and time — incorporates the randomness.

To arrive at a fermionic representation we introduce the Majorana fields

m(n) = \/% [ oho?,  mn) = \% I ok

m<n m<n

29
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Grassmann fields we get

that anticommute:

{m(n), 772(71')} =

assume
n<n'
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1
1 1 3
2 HO’mHO'/O'O'—{-HO' Haman,an
m<n m!<n' m'<n' m<n
1
1 3 2
B H m,a + H Ot Ot Oy
n<m'<n' n<m’'<n’
1
5 H m{arm Oy =0
n<m/ <n'

We can now express the Hamiltonian in terms of these fields:

H=(

since

m(n)ny(n) =

and in the same way

1
mm(n+1) = joloto

=26) 3 _[am(n)nea(n) — tm(n)nz(n + 1)]

n

3
n+1

—l 3 3

- ) anan+1

Taking another set of (independent) Majorana fields &;(n),&2(n) and taking
Vi = % (n; + i&;) we arrive at a Dirac fermion representation with

H Dirac

S (=) [ (n)ga(n) — gl(n)¢r (n)] +

n

+(itz) [] (n)ha(n + 1) — i(n + )¢ (n)] .

The mixed terms in 7 and & cancel precisely, as expected.
Writing then the partition function in terms of a functional integral over

with the action

Z = [ D, ) exp(-5)
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§ = [ SlB1(m)0-1(n) + Da(0)0a(m)] + Hoieae (15, ).

When reinterpreting time as a (continous) spatial coordinate and trading S
for a 2D Hamiltonian of (chiral) fermions, we arrive at a picture of a stack of 1D
right /left movers:

+l’1 (1/}}:277,1/}1411 + w};ann)‘i’
o (PhonWinst + Vhni1¥rn)

with the chiral fermions

Yra = (~1)"i(n) g, =i(=1)"di(n)
Yin = (—1)"a(n) YL, = i(—1)"Ps(n).

This Hamiltonian corresponds to the situation depicted in figure 3.1. The
energy eigenvalues are given by

E? = p2 + 1] + 15+ 2uy05cosp

with p, the z-component of the momentum and p the transverse momentum
— p € [—m;w]. The energy is minimal for p, = 0 and p = 7. It is then denoted
by Eumin = £|A| with A =47 — t5. An incident wave with E = 0 will decay with
exp(—|A|z). The decay length £ ~ |A|~! approaches infinity for the pure Ising
model with A = 0. This clearly describes the extended states and the long range
order at the critical point. The critical exponent is then — as would be expected
-v=1.

Figure 3.1 can now be interpreted in terms of a Chalker-Coddington network
model. This is done pictorialy in figure 3.2 (a). To establish a connection between
our ¢ s and the 6 s of the network model we take a closer look at figure 3.2 (b):
Following [Chal 88] we assign a transfer matrix to the node P(00).

¢P(00);1 _ cosh#; sinh6; ¢P(01);1
¢Pfem(01);2 sinhf; cosh 6, ¢P(00);2
This transfer matrix conserves the current; it can be rewritten as a S-matrix
and takes the form

¢pooyt |\ _ 1 1 — sinh 6, Pp(01);1 (3.3)
Pp(00);2 cosh 6, \ sinh6; 1 Pp_e,(01)2 ) :
Since the tunneling probability in (3.2) is proportional to :? we can identify
tanh(6;) with ¢;.
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Q 11) lPRn+1

n
Ln+1
L)
lPRn
=
lPLn
X=171
Figure 3.1: Pictorial representation of eqn. (3.2)
Y P(00):1
9 0 9 lPRn-I
2 2
P(10) P(11) P+e, (10)
P-e,(01);2 9, P(01);1
P(00)
191 ‘62 ‘61
P(00) P(01) P+e, (00)
P(00);2
Y @) (b)

Figure 3.2: (a) Mapping of (3.2) onto a CC network model.  (b) A close-up of

a single node.
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3.2 Introducing Disorder

As already explained in sec. 3.1 and in the introduction, disorder enters with
the sign of the coupling constant J. This O(1) randomness is transfered to the
network model, where it corresponds to a randomness in the sign of the @ s.
Since cosh @ is an even function in the argument 6 we have no randomness in
those terms, but only in those with tanh 6.

To arrive at a non-linear sigma model we proceed by calculating the disorder
averaged expectation value for an operator that bears some resemblance to the
conductance operator in the Chalker Coddington network model. This is justified
by the fact that we expect only one relevant length scale for two-point correla-
tion functions. The spin-correlation length for the 2D Hamiltonian (3.2) should
therefore behave in the same way as the decay length £ for the conductance g. M
and N denote in the following two specific links between which the conductance
is to be calculated. To arrive at an expression for g we follow the approach of
[Zirn 97] for the original Chalker-Coddington model.

When taking two arbitrary links within the network and trying to calculate the
averaged mean conductance by the Landauer-Biittiker formula gy = |Sy NP, we
need to calculate an expression for the S-matrix Sy;ny. We are then interested in
the stationary states. They are determined by the Schrodinger equation Uy = Ay
with U = exp(iHt) the time evolution operator. While the eigenphases A can
be gauged away, we still have to solve the remaining equation. This is done by
iteration; we obtain

. 2
gun = [Sunl” = (Ll T|lw)|

with T = U + UU'U + UU'UU'U +...= (1 —UU")"'U’ where U denotes the
one-step operator living in link-space that governs how the probability amplitudes
are scattered at the nodes and U’ denotes the phase that is picked up during
the transmission of a link!. The operator T describes how the complete lattice
evolves over time. For our convenience we drop the last U in the following
calculations. This will not change the behavior dramatically since we loose only
the last scattering process. Thus we finally arrive at the operator T = (1 — U)*
that we will use to construct the sigma-model.

3.2.1 Rewriting the Matrix Elements

To proceed we need to express the matrix element (I/|T|ly) and its conjugate in
terms of a Gaussian integral over super-numbers ¢ (cf. section 1.2.3). Thus we
get:

LU’ is obviously diagonal in link-space and has the same value for all links. We thus can
take it to be the identity operator and drop it in the subsequent discussion.
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(I (1= U Hiag) (a1~ U) L)
- /]‘ID <¢’¢) ¢ B(ZN)¢ B(ZM)¢+B(ZM)¢+B(ZN)

X exp {— Yo b0t 6 (1), (p38) — U ('), (51))] b0 (3 t)}

xeXp{— > b 05) [5 (W5, (1) — UT (0 )(p;t))}qﬁ—a(zﬂ;t)}

pt.p',t'o
(3.4)
For clarity we have dropped the Einstein summation convention. The inte-
gration measure is written in shorthand and is supposed to stand for the ”flat”
Berezin measure over all ¢ s on all links in all flavors:

I[P (¢,9)
- HD (¢ia P;t), o (P; t))
_HD(% P(00);1), ..., 1o (P(11); 8), o (P(00);1), .. .,y (P(11);1))

Again: for notational convenience we have introduced an alternative system
of labeling the nodes: When referring to a sum over all nodes we replace the
P(00), ... notation by p, which is supposed to run over all nodes.

3.2.2 Performing the Disorder Average for p = ;

The next step is to take the disorder in the coupling into account. We therefore
have to average over the O(1) group when taking p = 3 in equation (1.2). To
do so, we obviously need the precise dependence of the operator U on the group
elements. Since U can only couple to two adjacent links, we get the following
expression:

Uy ((051), (p31)) =

1A 5 Ui
cosh01 Pp {[ 2)(p —|—ey,p)+

)

+6(¢,2)6(¢,1)5(p" —ey,p)]

+0, smh&l[é(t 1)6(t,1)6(p" — ey, p)—
2)

—6(t',2)0(t,2)6(p" ~|—ey,p)]}

Here p” takes only values in the nodes that are actually occupied by a 6;.
This can be read off from eqn. (3.3) and figure 3.2 (b). A very similar expression
holds for #, sites. The (node-dependant) O, is the O(1) factor, i.e. takes values
in {+1; —1}.
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We are now in the position of being able to apply the color-flavor transforma-
tion (2.1) to this situation, thus taking the disorder average from an integration
over the O(1) to an integration over the homogenous super-space. The fact that
we integrate over the O(1) — and not the SO(1) — leads us to lose the baryonic
term in (2.1). Thus we get after the transformation:

J1LDu(20),2) [ [1o (6(p,1), 6(0,1)) (IS5 (1ar) D4 5(1ar) b5 (I) X

xexp{— > ¢ro (P(00);1) dre (P(00);1) + ¢ro (P(11);) ¢re (P(11)58) +

Pit,r=%,0

+¢ro (P(01);1) ¢ro (P(01);8) + ¢ro (P(10);2) drp (P(10);2) +

1
J _ -
+ P; , cosh 6

(610 (P(00); 1) §ry (P = €2(10); 2) + by (P(00); 2) ¢ (P(10);1) +
+ Gro (P(11);1) $ro (P(01);2) + 61y (P(11)52) 67y (P + €2(01);1)] +
Vi [ (POLR D) 9 (P 4 ¢, (00)52) + 6o (P(01)52) 60 (P00 1) +

+ bro (P(10);1) $rg (P(11);2) + 1o (P(10);2) bro (P — €, (11); 1)] +

+J > tanh 6y [ (P(00);8) Zyd Gror (P(00); ) + bro (P(11)51) Zroid bror (P(11);) +

Pt ¢!

r=+,0,0'

Fre (P — (t — 1)eg(10);8) ZX0 600 (P — (¢ — 1)e,(10);¢)) +
+ fro (P + (2 — t)es(01);8) Z7 50 dror (P + (2 — £)ea(01); )] +
+tanh by [$ry (P(01);8) Zy 00 Gror (P(01);t) + fro (P(10)51) Zyoiy) bror (P(10); ) +

o g

Fro (P + (t — 1)ey(00); ) ZE D bror (P + (' — 1)e, (00); ') +

r0 (P = (2 06y (11)50) 5000 (P = 2= O, 10 0)] |
(3.5)
We are now ready to integrate out the super-vectors. Since we have terms

of form ¢, ¢¢ and ¢¢ we cannot use the ordinary Gauss formula, but have to
apply the formula derived in appendix D. For this we have to write down the
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matrix M as introduced in the notation of the appendix. This is — in principle
— no problem, but requires some careful notation for large lattices. We will see
what M looks like in the case of a small lattice.

Example: A Single Plaquette

Consider a network consisting of a single plaquette as shown in
figure 3.3. We can now write down the matrix M using equation
(3.5).

1 0 L 0 [Z2 0 0 0
0 1 0 | 0 ZzZM o0 0
ety U 1 0 0 0o zU 0
Mol 0 ofs 0 1 |0 0o 0o ZzO
AC 0 0 0 0 0 0
o zW 9 0 0 0 0 0
0 0 Z 0 0 0 0
0 0 0 zW | o 0 0 0

Here the o, s denote the standard Pauli matrices and the Z s
include the tanh s and J s. The whole matrix is principially graded
in 1), 1 with the block matrices being denoted by A, B,C and D as
usual. The smaller grading is in the node parameter 00,01,.... The
matrix entries are matrices in their own right and have entries for the
interaction between the link types (i.e. 1, 2). For clarity we suppress
the boson/fermion grading.

To obtain now the lattice action we have to apply corollary D.1.
To be able to do so we must make M Osp symmetric. This is done
by introducing a factor % in block matrix A thus getting A’ and then
exchanging the 1’s and v’s to arrive at a D = —A'T matrix. Further-
more we have to multiply the two lower block matrices with —o. We
have then

(gmn) = /H Dp <Z(p), Z(p’)) SDetfleA'g}B(M)kz(N)Ag%(N)kl(M)
p

We now have to note that

Dy (2(p), Z(p)) = SDet (1 - Z(p)Z(p')) -

From this we can read off the lattice field theory:

<O> = /H D (Z(p), Z(p)) ® €XpD {_Slattice [Z(p)a Z(p)]} (36)
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1‘}2 ﬁ]
(10) (11)
) )

i 2
(00) (01)

Figure 3.3: An easy example network to demonstrate the structure of M.

with lattice action
Siastice[Z(p), Z(p)] = In SDetM — InSDet (1 — Z(p)Z(p))

where the last term stems from the measure. In this discussion we
have neglected terms that might occur through boundary conditions.

Obviously the lattice field theory derived in the example above can be gener-
alized to arbitrary lattices, so that (3.6) still holds. The general form of M can
be read off from (3.5). Writing it with Kronecker-deltas we get:

A = Oxx0yyr0gz0yy O oo+
+J(1 = 6)300 { (coSh 61) Oyyr8aySyy [0wr10a0 (Sndix 1)xr + 00X X') +
+0x100z1 (5t15XX' + 5t25(x+1)x')] +
+(cosh 82) 7Gx x+60ar0ary [ 6180 (Sudysnyy + 6adyyr) +

+5y05y’1 (5t15YY' + 5t26(y_1)yl)}}

o (X”Y”)(.'E”y”)
zZ = J (SXXr(Sny (Smcl (Syyr 5XX” (Syyu 6m~ (Syyu tha/t/ X

X [tanh 66,y + tanh 65(1 — 6,y)]

(X”Y”)(ﬂ‘,’”y”)
J (SX)(I(Sny 59”/ (Syyl Zato’t’ X

AN
|

X {tanh 61 (1 - 5wy)5w”y”5yw” [5.1:1 (5t15XX” + 5t25X(X”71)) +
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+0z0 (5t15X(X”+1) + 5t25XX”)] *

+ tanh 92 (5wy(

1- 5x"y")5m" {5.1:1 (5t15X(X"—1) + 5t25XX") +

020 (60 + Sadxxriny) | |

where X,Y are appropiate coordinates for P.

3.2.3 Arbitrary Probability Distribution

The results in the last section were obtained for p =  in (1.2) only. To generalize
these results we have to integrate over SO(1) in order to arrive at a sigma model
for p = 1. This is done in appendix E.

Having the sigma model for both —p =1 and p = % — we can now construct
a sigma model for arbitrary probabilities p € [0;1]. Note therefore that

(A(0))?

pA(1) + (1 - p)A(-1)
2(1 — p) l%] +(2p— 1DAQ1). (3.7)

If we examine now (e)P=! and (e)?='/2 — corresponding to an integration over
SO(1) viz. O(1) respectivly — we notice that

and further

(o)P=! = (o)P71/7 + ()P

()Pt = (0= + A(0)”

with A € [0;1]. We note that

(A()y=12 =

Comparing this to (3.7) we get for p € [;1]:

with A = (2p — 1).

()7 = (&)71/% + X(o)?



Chapter 4

Conclusions and Outlook

In this work we obtained two important results — a mathematical and a physical
one:

1. The color-flavor transformation for the SO(N),

2. The lattice action for the network model corresponding to the random bond
Ising model with binary probability distribution.

The Color-Flavor Transformation for SO(IN)

The mathematical result is expected to be applicable to a wide range of physical
systems, since it is valid for all models of universality class of type D — i.e.
those with SO(N) symmetry. Among other possible applications let us mention
SNS-quantum dots at very low temperatures with time-reversal and spin-rotation
invariance broken by magnetic fields viz. spin-orbit coupling.

The Lattice Field Theory for the RBI

The lattice action we derived is the starting point for a continuum limit for
the network model. Basically this should be achieved in the same way as the
continuum theory for the Chalker-Coddington network in [Zirn 97] for the integer
QHE. Still, we expect some difficulties, since the corresponding Boltzmann weight
Wiz, Z] = exp(—Sattice) = SDet M ~1SDet(1 — ZZ) does not — at least trivially
— factorize. This sigma-model — given in terms of the coordinates for the coset
space Z,Z — should in turn be evaluable, so that the critical exponents for the
spin-correlation length along the phase boundary and along the Nishimori-line
can be extracted. If that was possible, we could compare these results to those
obtained numerically.

39



40

CHAPTER 4. CONCLUSIONS AND OUTLOOK



Appendix A

The osp(2n,2n) algebra

Consider the following set of generators:

B = i = fif] G =B f;
B =4 (Wb, +5ibh) FU =4 (fifi— fifi) Gh=bifi G\=0if;
By = by, Foy = fole Gap = b, [

These operators are obviously color singlet and will therefore sometimes be

A

denoted as Cl.

Theorem A.1 The operators above form a representation of the osp(2n,2n) al-
gebra.

The linear structure property is rather obvious. To prove that they do indeed
form an algebra, we have to show that some rule (X,Y) — [X,Y] exists. It has
to be bilinear and must fulfill the following properties: (i) [X,X]| = 0, and (ii)
the Jacobi identity. The choice of the super-commutator is a good one. We will
show that the super-commutators remain within the algebra.

A.1 Preliminaries

In order to arrive at the representation for the generators given above we will
need the following lemma:

Lemma A.1 Let X,, X3 be elements of an arbitrary algebra g in some matriz
representation with 2n X 2n matrices. Furthermore, let ¢;,cy; be creators viz.
annihilators operating on some Fock space F with vacuum |0). Here I,J denote
a multi-index (i,0), where i = 1,...,n is an arbitrary quantum number and
o € {B, F} distinguishes between bosonic and fermionic operators.

The mapping

C(1,B)
Xo— Y, = (6(1,3)7 .. .C(n,p))Xa

C(n,F)

41
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15 an algebra homomorphism, i.e. preserves the Lie bracket and the vector space

structure.

Proof: We calculate the commutator of Y, an Ys:

[Yav Yﬂ]

renaming of var’s

[CIXQIJEJ7 CKXﬂKLEL]

Xors Xpxr (CléJCKEL — CKELCIEJ)

XCYIJXBKL ((_1)‘JHK‘CIEL5JK - (—1)‘JHK‘CICKEJEL—
- ((_1)|IHL|CK5J51L — (_1)‘1“L‘CKC[ELEJ))

Xoy; Xpir ((_1)‘JHK‘CIEL5JK — (_1)‘1“L‘CKEJ5[L>

CIXaIJX,BJL CL — CKXﬁKLXaLJEJ

CIXaIJX,BJL CL — CIXﬁIJXOtJL CL

CIXaIJX,BJL CL — CIXﬁIJXOtJL CL

cr[Xa, Xplrrer

The vector space structure is trivially preserved. O

This lemma can now be used to arrive at a ”"second quantized” form of the
¥’s and ¥’s and their products introduced in 2.1. Since we know that 1 is an
element of the osp algebra, we simply set

bi

By (2.4) we get then:

b, by by ft e fE O e J
by by oY Y F N PR o
—b} —by
B ... N
b% . b{v
- b.l bN
i=| B
1 1
TN
1 ... N
1 1
fLoe gy
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Thus we get for Py (n=1, N=2):

B B2 BBt — BB —Blfl —B2f2 Bl fl — B2

Go_ | BReER EaER BpLRR R R)

flbl + f2b2 flbl + f2b2 flfl + f2f2 flfl + f2f2

flbl + f2b2 fll_)l + f262 flfl + f2f2 flle + f2f_'2
For larger m, N this scheme can be easily extended. This matrix has the
structure of an osp(2,2) element when given in matrix representation (cf. [Bere

87]). Each of its entries can be identified with a generator given at the beginning
of this appendix!.

A.2 Pure Generators

In this and the following section we calculate the commutators of our osp gener-
ators.

Pure Bosonic Commutators The commutators that contain only bosonic
creators and annihilators have to be those of the symplectic group. They are:

ab cd
[B , B ] =0
Bap, Bea) = 0
[Bab, BCd] p— bflbzblcbfi — blcbfibfl b;’) The terms with mixed color indices commute trivially

bE b 0o + Db, Oac + bibiGaa + bLbE Gpa
B28pe + Bidse + BS6uq + BE6ha

[Baba Bg] = Bad(sbc + Bbd(sac
[Bab, Bg] — _Bac(sbd _ Bbc(sad
[By, B3] = Bgdy — Bidaa

The remaining non-trivial commutators were obtained in the same way as
[Bap, B¢Y].  When comparing these results with the sp(2n) commutators (cf.
[Pere 86]) one can see the right behavior.

Pure Fermionic Generators To compute the commutators for the FF sec-
tor generators (which are obviously bosonic) we follow the line of the preceding
paragraph:

!The elements of form é and c¢ were written as %cé =+ ¢c before. This corresponds to the
addition of some constants, which in turn does not change the commutators and therefore not
the algebra either.
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[Fab,FCd] = 0
[Fabach] 0 L o

Fu F| = fffifi— ffififi

= f;féfsbc_fgfé(sac_fczfg+fczf;

Fe6yq — F8p — F0aq + F6s

[Fab, F§] = Faadpe — Fradaa
[F®, FS] = —Focg, — F%,,
[F(;Z,F,ﬂ - F;(Sbc_Fbc(sad

Comparing these to the so(2n) generators, one identifies the pure fermionic
generators as those of the algebra in question.

Mixed Pure Bosonic and Pure Fermionic Commutators All of the nine
commutators of form [B, F| vanish, since the constituting creators and annihila-
tors commute.

A.3 Mixed Generators

When dealing with the mixed generators (i.e. those labeled with a ’G’) one has
to take care of the fact that these generators are of fermionic nature. This implies
the use of anti-commutators in the case of ”pure mixed” commutators. This can
be seen when looking at the definition of the super-commutator [Zirn 96a].

Commutators of Mixed and Pure Generators In this case we still have
to use the commutator. This can also be seen from the fact that a fermion
and a boson certainly obey the normal commutation relation (In fact this is the
motivation to define the super-commutator in such a way).

So this yields for the commutators of G:

[Gab,BCd] = 0

(G, By = (BLFiblbl + bl fiBibt — VLB, fi — BibibL i)
1
2

B Fibibi — b fidac — bLFibib + B Fibibl — B fidae — By Fibi})
= —z‘;gﬁfaac:—adbaac

(G, Bea] = byfpbiby —bbGbLfy
= B FibbY, — b fidaq — bifidec — Bi Fibib,
= —Gaq — GY%%4c

[Gab,Fab] — 0

(G Fd] = Gg,

(G Fq = G%p — G%pa
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In the following we will omit the calculations and simply state the results.
For G} they are

[ ZaBab] =0

[ gaBd] = _G‘If(sac

[ ] - _Gcbdad_Gdb(sac
GE P — Qe — Goegg
[ ngd] = —Ggdpg

Gy, Fea] = 0

For ég we get
Gb Bcd] — Gdb(saC + GCb(Sad

[

[Gb Bd] = G
[Ge,Bed) = 0
[G” ch] =0
G, Fd] = Gidy
G,

] — Gad(sbc - Gac(sbd
And finally for Gy
Gaba BCd] = Gg(sac + GIC;(Sad

%Gaba Bg] = Gepad

[Gaba Bcd] =0

[Gap, FU = G — G600
[Gah ch] = —Gqclpa

[Gaba ch] =0

Commutators of Mixed Generators In this case, where we are calculating
the super-commutator of two fermions, we have to use the anti-commutator:

{Gar, G} = b, fybiby + bLfab f
= Ob(fefa+ fafp)
=0

{Gaba ég} = Bgcopa

{Gaba G;} — de(sac

{Gab7 GCd} = ngac + Bgdbd
{é27 ég} =0

{GhGi} = Fibae+ Bibw
{G}, G} = FY5,
{Gy,Gay = 0

(63,6} = B“by,
{Gab,ch} =0
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Appendix B
The so(N) Generator

B.1 Calculation of F'

The so(N) generators are obtained in a similar fashion to the osp generators.
While for the osp we had to calculate 19 we will now go for ¥ (and again:
n=1, N=2):

quz B —bll;l —i-l_)lbl + flle +f1fl _b152 +I_)1b2 + flf_Z + f_1f2
- _b261 +(_)2b1 + f2f71 +f2fl _b252 +I_)2b2 + f2f_2 + f_2f2
The elements on the diagonal vanish due to supersymmetry cancellation leav-

ing a skew symmetric matrix as expected. The generator can then be read off
(general case) to be:

P9 = Bibl — 0B + fufd + fuf!

B.2 The Commutator

With F as given above we can now calculate the commutator:

(B9, M) = (Bib — LB+ FifD + fif7) (OF0h — biB, + FEfi+ £E ) —

— (vice versa)

= bbby, — bbby}, — biblbyb, + bibibyb,
ST+ LRI T+ LRI+ LR
—bFBLDLb + BEBLDLY] + BEBLDE BT — bEBLb: b
—I R fald = IR fala = T hofald = Jo ulafi

47
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= G0p0Lb, — Obybl + 0,blb, — GbyD,
+005b — OabyBh — Oabb, + 03D
+00 fafy — Oy £+ O fufy — S Fifi
00 Saly = O fofd + G fufs — O fy
= &%y (BLbh — LB, + Fify + fify) — otk (BEVL — bFBL + FE£2 + £ FD)
iy (B4bh — OhB + Fofd + fi 73) + 0%y (Bibg — BiBE + Fify + Fif¥)
ik it _ sil frik _ ik fril 4 il foik
From this result we can read off the structure constants of the algebra under

investigation. Comparing these to the well known structure constants of the
so(N) the identification of the special orthogonal algebra is easy. O



Appendix C

The Flavor Projector — SO(N)
Representation

In this short appendix we prove the validity of equation (2.19). Define the matrix
X that corresponds to F'¥ by:

ad[F]e < 3 (X)e,
I
X can be read off from this commutator to be
ad[F9]ek = §7k&, — (—1)AlskiE, .
Since the X are so(IN) generators we can write for arbitrary O € SO(N):
InO = Z aij(O)Xij

~

where a;;(O) are appropiate factors. Taking the T}, = exp {aij(O)Fij} we get

Ad[Ty)dy = exp (a;(0)ad[F]) 2,
kl
= |exp (aij(O)Xij) 4

-

=0

Since the Bose-Fermi states are written in terms of an exponential we have to
calculate what happen when we are acting with 7¢, on a collection of creators:

Toe &y ...10) = TL&TH TLE,TH ... T 0)
h\/—/
=/0)
= Ad[T))E4Ad[TH)E, . .. |0)
O & 0Y'E, ... |0)
When we now perform a Taylor expansion on exp(O“&,1%) and apply the
above, equation (2.19) follows.
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Appendix D

Generalized Gaussian Integrals

In order to get rid of the super-numbers in (3.5) we have to perform the Gaussian
integration. Unfortunatly there are terms of type ¢¢ and ¢¢ in the exponent,
such that the usual formula as given in the introduction is not applicable. We
have, therefore, to derive another Gaussian identity.

D.1 The Superdeterminant

To prepare ourselves for the next section we prove the following theorem, which
tells us how to calculate a general Gaussian integral as described above.

Theorem D.1 The following identity holds for M = ( é IB; ) € osp(2n, 2n):

/D(d},@/_)) exp [—% (J}Al/) + ¢YBp — opCyp — Ui/JDJ))] = SDet /2 ( g g )

where 1 denotes some super-vector, A, B, C and D are super-matrices and
o denotes the super-parity.

Proof: To prove this, first note that the integral above equals

b e |5 (-o0) (& 5 ) (5)]

The diagonalizable matrices M = T diag(A, —\) 7! — with X diagonal — are
dense in the set of matrices. Thus we are allowed to continue our results to

Y (Y
= =T =~ |. Now we have
Y’ (8
to check whether the side left of M can be reached by transposition and right

those not diagonalizable. We take then

ol
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e . 0 — L i i i
multiplication with 7 = ( 1 OJ ) This 7 is an involutive automorphism and
it is super-symmetric, i.e. 7 = —o7r = —770. We see now!:

v\ ;
(%) = e
@ oy T
Thus we have T = 77'T7'T7 as a condition on T which means that T €
Osp(2n,2n), as expected (cf. [Zirn 96b]). This is very similar to the "usual” case

where we need orthogonal matrices for a similarity transformation.
Our measure is furthermore invariant under Osp rotation and thus we arrive

at
| D', 9 exp H (', —ov') ( - ) ( ﬁ )] -

The rest is quite clear, since the above is — by the super-commutation relations
—equal to

| D9y exp [~ 2]
zﬁ1 )\i’F

N
I Aip
=1

A0
_ “1/2
= SDet ( 0 —\ >

— SDet /2 ( 4 B >

¢ D

The last equality is clear, since M = T'diag(A, —\)T . O

D.2 Matrix Elements

Our goal is now to obtain an expression for single elements of the supermatrix
M. This is done — in the same fashion as in 1.2.3 — in the following corollary:

1(e)7 = (#)Tr denotes here a special transposition that allows us to get from ( A > to

) (2
(¢T, _o-’(/}T)'
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Corollary D.1 An arbitrary matrix element A’Egz can be expressed in terms of

Altk2 — SDet!/2 /D(tb,&) BT exp {_% (4, —ov) M ( g >}

: . A B
where the same notational conventions apply as above and M = ( C D ) €

osp(2n, 2n).

 Let’ ion [ ¥ Y aff J
Proof: Let’s perform the transformation v — ¥ + M —oF |

Now we have to observe that for the Osp(2n|2n) the following equation holds (cf.
[Zirn 96b)?):

Vg € Osp(2n|2n) : g=rg T
= TgT =g 7T

Differentiation yields: X" =-Xr
= X 'T=_71"1X"11

Here we assumed that the algebra element X € osp(2n,2n) has an inverse,
but this is quite reasonable, since otherwise the SDet ! expression would make
no sense.

Turning back to the expression above we get:

(3) ()

T

Therefore we can finally write:

82
IO

Jeso{ =g mov+ onaefar () car (25 )]+

2The different sign in the super-symmetry of 7 stems from the fact that — for our Osp - the
fermionic and bosonic sectors are exchanged (cf. eqn. (2.5).

J,J=0
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Aoane( 1)

82 _1/2 ]. ¥ -1 J
P —— SDet MeXp _(J, J)M =
aJBlajBZ 2 _O-J

J,J=0

1
= SDet™/2M ¢ [Afg — Digy|

1
= SDet™'/2M Al + (AT 3]

= AMkSDet Y2M

This proves the corollary. O



Appendix E

Disorder Average for p =1

We calculated in 3.2.2 the lattice action for the sigma model corresponding to
p= % in the probability distribution. Therefore we had to integrate over the full
O(1). In order to arrive at a representation in terms of Z-matrices we have to
integrate over the SO(1) since this corresponds to just one point — p = 1. The
general principles as in 3.2.2 still apply, but this time things will get a little bit
more complicated.

We start with equation (3.4) in this case, too. When we then perform the
7full” color-flavor transformation for the SO(1) — including the baryonic term —
we arrive at something like:

<9MN>p:1 = <9MN>p:1/2 + <9MN>B-

Here we have introduced the baryonic term (). Since this is the only un-
known expression up to now we will restrict ourselves to the calculation of this
term. Furthermore, since most of this term is very similar to equation (3.5), we
will look at a single Z,Z term in the exponent only (i.e. for one node). This
looks after C-F transformation such as:

J Y tanh6y [, (P(00)) 225" 6,00 (P(00))

T 1=+

+hrr (P(00);€) ZEOV B 70 (P(00))

FeT"

+6,4 (P(00)) Z1 ) ¢ (P(00); €')

T

+6,7 (P = (t = 1)ea(10) Z2176,.50 (P = (¢ = 1)e,(10))

T
+¢.p (P — (e — 1)ey(10); €) Z;e(;‘?@@, (P — (t' — 1)e4(10))

+ 5 (P = (t = 1)ea(10) Zp) oo (P = (' — 1)eg(10);¢')]
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Here we have introduced T' = (o,t) as a shorthand notation. The hatted
indices 7" correspond to the whole range except, again, (F,e). To obtain the full

expression for (e)® we have to apply this transformation to the other nodes as
well.
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