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PrefaceThe random bond Ising model (RBI) was proposed to include disorder into thestandard Ising model which was already understood quite well. It prooved to beharder to tackle than expected. Although some numerical results are available,there are still a lot of open questions.One of the most valuable tools when dealing with disordered and impuresystems is super-symmetry. The application of super-symmetric methods in con-densed matter theory was initiated by Efetov in 1983. Recent developments ofintegration theory in super-spaces made it possible to express integrals de�nedover some classical Lie group in terms of integrals over super�elds, that live ona coset space. These kind of identities are called "color-
avor transformations"since integrals similar to them arise in the context of quark and gluon �elds.The main goal of this thesis is to obtain a the lattice version of a non-linearsigma model for the RBI with binary probability distribution. Chapter 1 isintended to introduce the physical background of the Ising model, disorder treat-ment and the super-symmetric tools needed to do this. In chapter 2 a newcolor-
avor transformation is derived that relates an integral over the special-orthogonal group { SO(N) { to an integral over the symmetric super-coset-spaceOsp(2nj2n)/Gl(njn). Chapter 3 is dedicated to the application of the color-
avor transformation derived in chapter 2. Here the random bond Ising model ismapped onto the lattice version of a sigma model using this transformation.
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Abstract { ZusammenfassungDas Ziel dieser Arbeit ist die Herleitung der Gitterversion eines nichtlinearen Sig-mamodelles f�ur das Random-Bond-Ising Modell (RBI) mit bin�arer Wahrschein-lichkeitsverteilung. [Cho 97] folgend wird das RBI auf ein Netzwerkmodell ab-gebildet. Dieses Netzwerkmodell hat gro�e �Ahnlichkeit mit dem 1988 von Chal-ker und Coddington vorgeschlagenen Modell f�ur den ganzzahligen Quanten-Hall-E�ekt [Chal 88]. Der Unterschied liegt im Auftreten des Zufalls: In dem mitdem RBI assoziierten Modell lebt ein O(1) = Z2 Zufall auf den Gitterpunkten(nodes) des Netzwerkmodelles, w�ahrend im CC-Modell die Verbindungen (links)zwischen den Punkten einen U(1) Zufall tragen.Die Abbildung des RBI-Hamiltonians f�uhrt �uber einen Dirac-Hamiltonian di-rekt zu dem bereits beschriebenen Netzwerkmodell. Um dem nichtlinearen Sig-mamodell n�aher zu kommen, wird das Integral �uber die O(1) durch ein Integral�uber einen symmetrischen Superraum ersetzt. An diesem Punkt setzt eine neuar-tige Transformation an. Diese Transformation { die Color-Flavor-Transformation(C-F) { wird f�ur den allgemeinen Fall SO(N) bzw. O(N) hergeleitet. Die An-wendung erfolgt dann auf das zum RBI geh�orige Netzwerkmodell { �ahnlich wiein [Zirn 97] f�ur das CC-Modell. Die dabei auftauchenden Spezialf�alle sind dieO(1) und die SO(1). In diesem Zusammenhang ist bemerkenswert, da� die C-F-Transformation auch f�ur kleine N noch exakt ist.F�ur die resultierende Gitterwirkung besteht nun die Ho�nung, da� sich einKontinuums-Grenzwert bilden l�a�t, der dann zu einem nichtlinearen Sigmamo-dell f�uhrt. Aus diesem Sigmamodell sollten sich die kritischen Exponenten f�ur dasSkalenverhalten der Spin-Korrelationl�ange im multikritischen Punkt des RBI ent-lang der Phasengrenze sowie entlang der sognannten "Nishimori-Linie" ermittelnlassen.
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Chapter 1Introduction
1.1 Physical Motivation1.1.1 The History of the Ising ModelAt the beginning of this century the physics of mesoscopic condensed mattersystems { i.e. systems whose behavior is governed by quantum coherence overscales that are larger than the system size { was rather a minor �eld. Most tools {experimental as well as theoretical { necessary to investigate those systems werenot at hand. The dawning of quantum physics during the �rst quarter of thecentury and the technological improvements thereby induced gave physicists thenecessary equipment to enter the mesoscopic world.From the very start of this development the community was interested inthe description of the magnetic properties of the systems under considerationand { quite naturally { the impact of quantization on those properties. Since itwas realized that the theories that would cover everyday experience were by fartoo complicated to start with, physicists were focusing on simple "toy" models.Those either ignored forces of interacting particles or did other cruel things to theunderlying physics. But still these models were applicable to real physical systemsand produced even at times results that complied better with experiment thanany other theory before. The deeper reason for this is that for a wide range ofphysical systems some of the observed quantities do not depend on the underlyingmicroscopical details, but only on universal symmetries.One of these models was developed by E Ising in his 1925 PhD thesis [Isin 25]and is nowadays widely known as the "Ising model". It describes Elementar-magnete1 on a square lattice that experience a coupling to their next neighbors{ interaction with elementary magnets on all other sites are ignored2. Since a1germ.: elementary magnets, nowadays identi�ed with electron spins2In fact, Ising gives already a qualitative argument for the physical justi�cation for thisprocedure. 1



2 CHAPTER 1. INTRODUCTIONperfect lattice is assumed, the coupling constant is being kept constant over thewhole lattice. The Hamiltonian of this system is then:H = �JXhi;jiSiSj (1.1)where Si denotes the spin operator for site i and summation is assumed to rangeover adjacent sites only.This model was studied intensely in the subsequent years. Peierls proved in1936 the existence of an ordered low-temperature phase [Peie 36] for d = 2. In1941 Kramers and Wannier used transfer matrix and duality techniques to tacklethe Ising model [Kram 41]. Finally, in 1944, Onsager was able to calculate thecritical temperature and the free energy of the 2D Ising model thereby solving themost fundamental questions. In the sequel their methods were improved and var-ious other physical quantities were derived, e.g. the spontaneous magnetizationetc. In the 60s it was shown that { for dimension 4 and higher { a semi-classicalmean �eld theory produced exact solutions for the Ising model. There was (andstill is) no analytical solution to the 3D Ising models.1.1.2 The Advent of RandomnessRealistic physical systems cannot be considered to be pure in any respect. Thisfundamental fact was usually ignored by the theories of condensed matter systemsof the early days. Nevertheless the ever increasing precision of experimentaltechniques made it necessary to incorporate impurity into the theories.1968 McCoy and Wu introduced an Ising model that included impurity in-duced disorder [McCo 68]. They allowed the coupling parameters between adja-cent rows to 
uctuate, i.e. the vertical paramters could take arbitrary values. Atthe same time the horizontal coupling parameters were kept constant.In the following years the interest focused on the random bond Ising model(RBI), with random sign but constant modulus in the coupling parameter (binarydistribution). The probability distribution was then:P (Jij) = p �(Jij � J) + (1� p) �(Jij + J) (1.2)Here p is the probability to have positive J on bond hi; ji. When we take acloser look at the phase diagram we see that for the pure Ising system we havea phase transistion from a ferromagnetic phase to a paramagnetic phase at �nitetemperature Tc. On the T = 0 axis we �nd a quantum critical point at which wehave a spin-glass transition on the axis. Nishimori [Nish 81] was able to performan exact calculation of various physical quantities for this RBI on a line in thephase diagram that was subsequently named after him. This Nishimori line isgiven by tanh JkT = 2p � 1. For the binary distribution (1.2) Nishimori arrivesat hhEii = �N(N � 1)(2p � 1)=2 as an expression of the internal energy. The



1.1. PHYSICAL MOTIVATION 3
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Figure 1.1: Phase diagram for the RBIrenormalization 
ow "above" the Nishimori line is directed towards the Isingcritical point, while below the line it points towards the quantum critical pointon the T = 0 axis. This indicates domination of the ferromagnetic viz. the spin-glass correlation. The intersection of the Nishimori line with the phase boundaryis expected to be a multicritical point.Further research on the random-bond Ising model was done by Dotsenko andDotsenko [Dots 83], Shankar [Shan 87] and most recently by Singh and Adler[Sing 96] and Cho and Fisher [Cho 97]. Binder and Young were able to givea strong argument against a �nite temperature spin-glass phase for the two-dimensional model [Bind 86].The (approximate) p-T phase diagram representing our current knowledgeon the RBI is given in �gure 1.1. While we know a lot of the properties of theNishimori multicritical point, the critical exponents are still only vaguely known.The major goal of this thesis is to take a further step towards a sigma model forthe RBI.1.1.3 QHE and Network ModelsWhen mapping the RBI onto a non-linear sigma model we will make use of anetwork model. These type of models were developed in the framework of thequantum Hall e�ect (QHE). To give some background we give a very short reviewof their history.In 1980 v. Klitzing et al. discovered some unusual behavior in 2D systems:the Hall conductances �xx and �xy were no longer linear in the applied magnetic



4 CHAPTER 1. INTRODUCTION
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Figure 1.2: The Chalker-Coddington (CC) network model�eld but seemed to be quantized. This phenomenon { the quantum Hall e�ect {was easy to reproduce, but theorists had a hard time understanding the physicsof this e�ect. Among the �rst qualitative phenomenological ideas were Landaulevels with extended states only at the center of each level; later �eld theorieswith topological terms followed.A very remarkable ansatz to the problems of the QHE with disorder was pro-posed by Chalker and Coddington [Chal 88]. The two-dimensional conducting(square) lattice is modeled in the following way: Areas of higher and lower po-tential { that are induced by disorder { form "hills" and "wells". If the energy ofthe electrons is still low they are con�ned to the wells and their "guiding center"moves on a deformed circle. When raising the energy to the point where the wellsare completely �lled they touch (i.e. they come closer than the magnetic lengthlc) and the electrons start to tunnel to adjacent wells thus percolating through thesystem. This behavior is caricaturized by a network of squares whose boundariesrepresent equipotential lines. A single line is usually called a link. On the linksthe electrons can move in one direction. At the end of each link the electron hasto pass a node where it either continues to move along its current equipotentialline or it tunnels through to some adjacent equipotential (cf. �gure 1.2).The wavefunctions are now represented by complex numbers living on thelinks. Randomness is incorporated in the following way: Each electron acquiresan Aharonov-Bohm phase when passing a certain link. The amount of phasethus gained is proportional to the length of the link under consideration. Whenassociating random phases with the links, and thus random lengths, we can quitenaturally incorporate disorder into our model.



1.2. MATHEMATICAL BACKGROUND 5Although this model simpli�es the real system to a large extend, still it is veryhard to solve analytically. After some experience was gained about how to mapthe CC model on a corresponding Dirac Hamiltonian or how to treat it in termsof spin chains, the latest developments made it possible to map the problem ona non-linear sigma model [Zirn 97].In chapter 3 we will review the mapping of the RBI onto a CC-like networkmodel (cf. [Cho 97]) which in turn can be represented by a non-linear sigmamodel. Randomness occurs in this e�ective network model not on the links buton the nodes in terms of the sign of the coupling parameter. Dealing with therandomness requires us to use the color-
avor transformation, which is derivedin chapter 2.1.2 Mathematical BackgroundThe key for the derivation of the sigma-model is the application of an integralidentity { the color-
avor transformation { between an integral de�ned on thegroup manifold of the special orthogonal group in N dimensions { the SO(N){ and an integral de�ned over the symmetric super-space of type CIjDIII3. Aself-contained introduction to integration theory over symmetric super-manifoldsis certainly beyond the scope of this thesis { a good starting point for this is[Bere 87] and [Zirn 96b]. Furthermore we will make extensive use of the theoryof Lie groups and Lie algebras which is also not introduced here as well. For asound introduction to this �eld see [Helg 78]. We will look at some key de�nitionsand theorems of theory of Lie groups and super manifolds only as a means ofintroducing our notation.1.2.1 Lie GroupsRecall some de�nitions:De�nition 1.1 1. A Lie group is a group G which is also an analytic manifoldsuch that the mapping (�; �) 7! ���1; �; � 2 G of the product manifoldG�G into G is analytic.2. Let g be a vector space over a �eld K with characteristic 0. g is called Liealgebra if there exists a bilinear mapping [�; �] from g � g into g with thefollowing properties:(a) [X; Y ] = �[Y;X](b) [X; [Y; Z]] + [Z; [X; Y ]] + [Y; [Z;X]] = 03"CI" and "DIII" are two of Cartans symmetric spaces (cf. [Helg 78]); the classi�cation forsome of the symmetric super-spaces is given in [Zirn 96b].



6 CHAPTER 1. INTRODUCTIONTo make a connection between Lie groups and algebras we have to introducethe exponential mapping.De�nition 1.2 The mapping given byexp : X 7! expX = 1Xk=0 Xkk!is called the exponential mapping. X 2 g { a Lie algebra { is supposed to begiven in some matrix representation.It can now be shown that with every Lie algebra comes at least one Liegroup corresponding to it. The classi�cation of the Lie algebras and groups wasperformed at the beginning of this century, mainly by E. Cartan. Again, this isreviewed in [Helg 78].In order to integrate in the space of continous functions C(G) over the groupmanifold G we need a measure. If G is compact or C is restricted to the continousfunctions with compact support, we are guaranteed to have a so-called "Haar-measure" (cf. [Rich 81]) which is left-invariant, i.e. RG f(hg)dg = RG f(g)dg.1.2.2 Generalized Coherent StatesIn the proof of the central theorem of this thesis we will make extensive use ofso-called "generalized coherent states". Again we will introduce here only thebasic concepts of these objects. For a general introduction we refer to [Pere 86].Let G be an arbitrary Lie group and Tg its unitary irreducible representationacting on the Hilbert space H. Choose some state j0i in that Hilbert spaceand consider then states jgi = Tgj0i. Take H to be the maximal subgroup ofG, whose elements satisfy Thj0i = j0i exp (i�(h)) (� denotes here some complexvalued function of h). H is then referred to as the "isotropy subgroup" of G.De�nition 1.3 The system of states fjgi : jgi = Tgj0ig, where g are elements ofthe Lie group G, T is an unitary irreducible representation of G acting on someHilbert space H and j0i is a �xed vector of that space, is called the coherent statesystem fT; j0ig.Let H be the isotropy subgroup for T , i.e. the maximal subgroup that leaves angeneralized coherent state unchanged besides an arbitrary factor. Then a coherentstate jgi with g 2 G is determined by a point x = �(g) 2 G=H { the coset spaceof G and H { by jgi = exp (i�(h)) j�(g)i. � is here the canonical mapping fromthe �ber bundle G onto its base G=H.Among the most important properties of the coherent states we have the factthat they resolve the identity operator due to the irreducibility of the represen-tation of G on H. This can be seen as follows:



1.2. MATHEMATICAL BACKGROUND 7On every Lie group G there exists a left invariant measure dg, called the"Haar measure" (s.a.). It induces a measure dx on the (homogeneous) cosetspace X = G=H. Let us consider the operatorB = Z dxjxihxj x 2 X = G=Hassuming convergence. It is quite easy to see that TgBT�1g = B, i.e. that Bcommutes with every Tg and must therefore be a multiple of the identity operatoraccording to Schur's lemma. We can write then B = c � I. To �x c calculate theexpectation value with an arbitrary normalized 4 state jgi:hgjBjgi = Z jhgjxij2dx = Z jh0jxij2dx = dTo arrive at the promised resolution of unity we have to adjust our measuredx by introducing a new factor d�1: d�(x) = dx � d�1. With this measure wehave: I = Z d�(x)jxihxj (1.3)1.2.3 Super-AnalysisA good introduction to super-analysis is given by [Efet 83] and [Bere 87]. Here wewill recall some basics on Grassmanian (also known as fermionic) variables andthe generalization of standard di�erential geometry to super-spaces. We startwith the de�nition of Grassmann numbers:De�nition 1.4 Let �n be n distinct objects obeying the anti-commutation rule:f�i; �jg := �i�j + �j�i = 0These objects are the (free) generators of the Grassmann algebra �.Remarks:1. It is quite important to note that the square of a generator vanishes. Theelements of � can then be written as:� =X� f i1���in�i�(1) : : : �i�(n)The sum is understood to run over all permutations of the indices, whereasthe f are c-numbers. Taylor expansion stops therefore at �nite order { forone generator this means that the series has a cut-o� even at �rst order.4i.e. hgjgi = 1



8 CHAPTER 1. INTRODUCTION2. Elements with an even number of Grassmann generators do actually com-mute. We can now de�ne a parity for those elements of the algebra thathave either an even or an odd number of generators in the following way:To those numbers that are composed of commuting elements only we assignparity 0, whereas the purely anti-commuting elements are assigned parity1. This induces canonically a Z2 grading. Parity p elements span the space�p in such a way that we have for the whole Grassmann algebra:� = �0 + �13. The di�erentiation is de�ned just like ordinary di�erentiation with the ex-ception that it is possible to de�ne left and right derivatives due to theanti-commuting property of the Grassmann numbers.4. We can also de�ne integration over the Grassmann variables. The two typesof integrals possible are then de�ned to be:Z d�i = 0 Z d�i �j = �ijA closer examination of the de�ning equations shows that integration anddi�erentiation are just the same. We therefore get:Z Oi d�if(�1; : : : ; �n) = f(1; 1; : : : ; 1)For a change in the integration variables we get from the above relations:Z d�f(�) = detA�1 Z d�f(A�); for � = A�and Z d�f(�) = Z d�f(� + �):One of the reasons to consider integration of Grassmann variables is the fre-quent occurrence of Gaussian integrals over Grassmann and super-vectors. Thoseintegrals can be transformed { just like in the case of commuting variables { intodeterminants. We have� for commuting ("bosonic") variables:Z î dzi ^ d�zi exp (��ziAijzj) = det�1A



1.2. MATHEMATICAL BACKGROUND 9� for anti-commuting ("fermionic") variables:Z Oi d�i 
 d��i exp ����iAij�j� = detAMore important, arbitrary matrix elements can be expressed in terms of super-integrals. This is done by application of the above formulas. Thus we get:Z D D �  i;� � j;�0 exp �� � IAIJ J� = A(i;�)(j;�0) SDetAAn even more general formula for the expression of matrix elements by super-Gauss integrals is proved in appendix D.It is now possible to consider "super-manifolds". These manifolds are de�nedto be locally the tensor product of the algebra of analytic functions over an opensubset U � Rn with some Grassmann algebra �. This is described in [Bere 87].It turns out that some of these super-manifolds { the Riemannian symmetric ones{ correspond to physical universality classes. They are examined in the light oftheir physical relevance in a recent paper [Zirn 96b].The super-manifold under consideration is a coset space of the ortho-symplec-tic super-group Osp(2nj2n) and the general linear super-group Gl(njn). Thesesuper-groups and their corresponding group manifolds can be represented by(2n + 2n) � (2n + 2n) viz. (n + n) � (n + n) super-matrices. Consider forexample the Osp representation: Take 4n � 4n matrices and block-decomposethem into 2n � 2n blocks: g =  g00 g01g10 g11 !. This grading is taken to be inbosons and fermions, i.e. the g00 and g11 correspond to the BB and FF blockrespectively. They have therefore c-numbers as elements. The o�-diagonal blockshave Grassmann numbers as entries.During the proof of the color-
avor transformation in chapter 2 we will per-form a "second quantization" and thus encounter super-Fock spaces. They canbe thought of as the usual Fock spaces, but this time bosons as well as fermionscan be created or destroyed. The super-creators and super-annihilators that acton the super-Fock space are labeled �ciA viz. ciA where i is some "color" index andA is a "
avor" index, discriminating bosons and fermions. The reason for thisnaming scheme as well as the range of the indices will become clear during theproof.
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Chapter 2Color-Flavor TransformationIn this chapter we will prove the following remarkable identity:Theorem 2.1 The following equation holds (using the quantities de�ned below):ZSO(N) dO exp � � iAOij jA� = Z D�N(Z; ~Z) exp � � iAZAB � iB +  iA ~ZAB iB�++ Z D�N(Z; ~Z) exp � � îAZÂB̂ � îB + � îAZÂ(e;F ) i(e;F ) +  i(e:F )Z(e;F )B̂ � îB ++ îA ~ZÂB̂ îB +  îA ~ZÂ(e;F ) � i(e;F ) + � i(e;F ) ~Z(e;F )B̂ îB� (2.1)This equation relates an integral which is de�ned over the special orthogo-nal group in N dimensions to a sum of two integrals which are de�ned over asymmetric super-space of class (CIjDIII). The upper index i { also sometimes re-ferred to as "color" index1 { has range 1; : : : ; N . The lower { or "
avor" { indexA is a multi-index (a; �) with a = 1; : : : ; n and � takes values in fB;Fg. Heren is arbitrary, but usually dictated by the physical application. Flavor indices Âwith a hat are supposed to run over the whole range but (e; F ). The reason forexcluding this very entry and performing a creator/annihilator exchange is givenin the subsequent derivation of the theorem. The  s and � s are super-variables,i.e. can be written in terms of c-numbers and Grassmann numbers, dependingon the value of � in the 
avor index. While O are simply elements of the SO(N)and dO is the usual left invariant Haar measure on the Lie group, the Z and ~Zsuper-matrices parameterize the coset space (CIjDIII). D�N is the normalizedmeasure on the coset space, given by:D�N(Z; ~Z) = D(Z; ~Z) SDet(1� ~ZZ)�N1Integrals similar to the left-hand side appear sometimes in lattice-gauge theory. There,  corresponds to quarks, while the O s are similar to color-carrying gluons.11



12 CHAPTER 2. COLOR-FLAVOR TRANSFORMATIONwhere D(Z; ~Z) denotes the "
at" Berezin measure2.2.1 PreliminariesIn order to prove identity (2.1) we consider two vector spaces V and W { CNand C2nj2n respectively. These spaces will be referred to as physical or colorspace viz. auxiliary or 
avor space. The auxiliary space is a Z2 graded sumof a bosonic space WB = C2n and a fermionic space WF = C2n, i.e. W =WB�WF . We will later utilize the Gaussian Berezin integral over the symmetricRiemannian super-space Hom�(V;W )�Hom~�(W;V ) where Hom�(W;V ) def= �0
Hom(WB; V ) + �1 
Hom(WF ; V ) with � = �0 + �1 the Grassmann algebra withN = dimC(Hom(WF ,V )) generators.Since our �nal goal is to integrate over the SO(N) and transform this into anintegral over the Osp(2nj2n)/Gl(njn) coset space, we have to relate them in someway. We will do this by relating their corresponding algebras.If we now consider elements  ; ~ of the spaces of homomorphisms fromW to Vviz. V toW , we will use them to construct endomorphisms inW and V by simpleconcatenation. To force the proper group structure on these endomorphisms wehave to put constraints on their form. In matrix representation this is usuallydone by requiring the algebra elements to ful�ll some condition likeAJ + J AT = 0 , A = �J AT J �1 (2.2)for all elements A of the algebra under consideration. In our case the (�)Tdenotes the usual matrix transposition or super transposition for the so(N) viz.the osp(2n,2n). Using now our homomorphisms we can model the algebras theybelong to by imposing proper constraints on them:( ~  ) = �
( ~  )T
�1 2 End(W )( ~ ) = �C( ~ )TC�1 2 End(V ) (2.3)To force End(V ) to be an so(N) algebra we simply set C = 1N . But thisalready puts a constraint on 
, since:~  = �
 T ~ T
�1  ~ = �C ~ T TC�1= � �
 TC�1� �C ~ T
�1� = � �C ~ T
�1� �
 TC�1�A proper choice for  and ~ is then:2For further details see [Zirn 96b] and [Roth 87]. It is important to note that this relationis only locally valid. When de�ning a global measure, so-called "anomalies" (aka. boundaryterms) arise which one has to take into account.



2.1. PRELIMINARIES 13~ = �
 TC�1  = C ~ T
�1 (2.4)We proceed by using this relation to get some condition for 
: = C ~ T
�1= �C �
 TC�1�T 
�1= � C(C�1)T| {z }=1 , since C =1 TT
T
�1= � �
T
�1Thus we arrive at: 
 = �
T� (2.5)As already noted above � is the superparity diag(12n;�12n). With thisconstraint in mind we can choose 
 to be:
 = 0BBB@ 0 1n 0 0�1n 0 0 00 0 0 1n0 0 1n 0 1CCCAIn [Bere 87] the osp(2n,2n) is de�ned to ful�ll (2.2) with this 
 (as J )3.The two algebras occuring { so(N) and osp(2n,2n) { can now be representedin second quantized form by creator/annihilators pairs (cf. lemma A.1):De�nition 2.1 1. The generators of the osp(2n,2n) can be written asBab = �bia�bib F ab = �f ia �f ib Gab = �bia �f ibBba = 12 �bia�bib +�bibbia� F ba = 12 �f ia �f ib � �f ibf ia� Gba = �biaf ib ~Gba = bia �f ibBab = biabib Fab = f iaf ib Gab = biaf ibSometimes they will be referred to as color singlet or 
avor operators Ĉab.2. The generators of the so(N) algebra can be represented byF̂ ij = �biabja � bia�bja + �f iaf ja + f ia �f jaThey will be referrred to as 
avor singlet or color operators.3In fact, Berezin chose J to have simply 12n in the FF sector instead of �x
1n. A simplecalculation shows that nothing is changed, as can also be seen from the commutators of theosp(2n,2n) generators in the FF sector.



14 CHAPTER 2. COLOR-FLAVOR TRANSFORMATION2.2 The osp(2n,2n) and the Flavor SectorThe principle idea in the following proof of the color-
avor transformation is toshow the equality of two di�erent projectors on the 
avor sector4. The �rst wayto describe the 
avor sector is given by the very de�nition of it: Being the partof the super-Fock space that gets annihilated by the 
avor singlet operators F̂ ij.On the other hand we will show that the 
avor sector is completely covered byacting with the color singlet operators, which form an osp(2n,2n) algebra, on thevacuum state j0i and on the Fermi-baryonic5 state �FB(a)j0i. The baryonic state isde�ned to have one fermion of every color, but all with the same 
avor6:�FB(a)j0i := �f 1a : : : �fNa j0iA crucial di�erence to [Zirn 96a] is that the 
avor sector decomposes intotwo parts { the vacuum and the baryonic subsector { each of which cannot bereached by a multiple action of the osp(2n,2n) onto their states. This was alreadyshown for the large N limit in [Zirn 96b] by using the saddle-point approximationand thus anticipated to hold also for arbitrary N. The deeper reason behindthis is the existence of another invariant tensor for the SO(N), namely the totalantisymmetric tensor in N dimensions: �i1:::iN .The form of the generators of the so(N) and the osp(2n,2n) respectively isderived in the appendix.To show that osp(2n,2n) acts irreducibly on each of the two subsectors ofthe 
avor sector we will take three steps: First we will show that the vacuumand the baryonic state are elements of the 
avor sector. Then we are going toshow that the color singlet operators (i.e. the osp generators) and the 
avorsinglet operators commute. This shows that at least all osp(2n,2n) generatedstates are in fact color neutral. The last thing to prove is the non-existence offurther states. This will be achieved by using the tensor-space representation ofthe so(N), limiting the 
avor states (de�ned through the 
avor singlet operator)to those that can be reached by multiple osp(2n,2n) action onto the vacuum andthe baryonic state. It is the last step, where the additional invariant tensor entersthe game. Obviously, when switching from the SO(N) to the O(N) this tensor nolonger occurs.2.2.1 The Flavor SectorWe start with a de�nition of some ingredients that will play a crucial rôle in ourinvestigation:4The 
avor sector is a subspace of the super-Fock space. It will be de�ned immediately.5We use the term "baryonic" since every 
avor occurs in the state under consideration, justlike every color occurs in the case of the constituting quarks in the hadrons.6It will be shown that the 
avor is of no importance.



2.2. THE OSP(2N,2N) AND THE FLAVOR SECTOR 15De�nition 2.2 Let us consider a super-Fock space with vacuum j0i, selected by7ciAj0i = 0. The set of elements of the Fock space that vanishes under action ofthe so(N) generator { the 
avor singlet operator F̂ ij { is called the color neutralor 
avor sector. Elements of this sector will sometimes be denoted as j
avori.Remark: The 
avor sector is actually the key to the whole proof given here.We will construct a projector on that very sector in two di�erent ways and showthat these projectors are identical.The �rst thing to prove is that the vacuum j0i and the baryonic state �FBj0iactually get killed by the 
avor singlet operators:Lemma 2.1 The vacuum state j0i and the Fermi-baryonic state �FB(a)j0i are ele-ments of the 
avor sector:F̂ ijj0i = 0 and F̂ ij �FB(a)j0i = 0 for all i; j = 1 : : :NProof: When acting with F̂ ij onto j0i we get:F̂ ijj0i = Xa �biabja � bia�bja + �f iaf ja + f ia �f ja j0i= �n � �ij + n � �ij= 0The second equality sign stems from the fact that for i 6= j the creators andannihilators trivially commute viz. anti-commute, whereas for i = j the constantsarising from the exchange of the Bose and Fermi operators cancel exactly. Forthe Fermi-baryonic state we have:F̂ ij �FB(b)j0i = Xa ��biabja � bia�bja + �f iaf ja + f ia �f ja� � �f 1b : : : �fNb � j0i= �0� n � �ij + �ij + (n� 1) � �ij� j0i= 0Here we have applied the same idea as above. We still have to show that the
avor of the Fermi-baryonic state plays no rôle. This is established as soon aswe can show that there is no problem in getting from �FB(a) to �FB(b) by a multipleaction of the osp(2n,2n) generators:7Here { as everywhere else { ciA denotes the annihilator for a particle of color i and 
avorA, where A is a multi-index (a; �), a = 1; : : : ; N and � 2 fB;Fg. Naming and range of theindices is the same for the corresponding creator �ciA.



16 CHAPTER 2. COLOR-FLAVOR TRANSFORMATIONF ba �FB(a)j0i = 12 �f ia �f ib � �f ibf ia� �f 1a : : : �fNa j0i= � �f 1b �f 2a : : : �fNa + : : :+ �f 1a : : : �fN�1a �fNb � j0iF ab F ab �FB(a) = � �f 1b �f 2b �f 3a : : : �fNa + : : :+ �f 1b �f 2a : : : �fNb ++ �f 1b �f 2b : : : �fNa + : : :+ �f 1a �f 2b + : : : �fNb ++ : : :+ �f 1b �f 2a : : : �fNb + : : :+ �f 1a : : : �fN�1b �fNb � j0iThus we arrive �nally at:�FB(b) = 1N ! �F ba�N �FB(a)j0i: 2In the following theorem we show by a simple argument that there is no wayto arrive at the baryonic state by any multiple action of the osp(2n,2n) generatorson the vacuum state and vice versa.Theorem 2.2 The 
avor sector decomposes into at least two unconnected setsof states. In the one part lies the vacuum whereas the other contains the baryonicFermi states. Neither of these parts can be reached by a multiple action of theosp(2n,2n) on an arbitrary state of the other.Proof: Each of the color singlet operators can create or destroy only pairs ofparticles with the same color or change the 
avor of particles but not their color.2 To continue our program we have to prove the following lemma:Lemma 2.2 The generators of the osp(2n,2n) super-algebra commute with the
avor singlet operator, i.e.8 i; j 2 f1; : : : ; Ng8a; b 2 f1; : : : ; ng : [F̂ ij; Ĉab] = 0 (2.6)Proof: To prove this relation we simply calculate the commutators:[F̂ ij; Bab] = Pk;c�bicbjc�bka�bkb � bic�bjc�bka�bkb � �bka�bkb�bic + �bka�bkb bic�bjc= Pk;c �jkac�bic�bkb + �jkbc�bic�bka � �ikac�bjc�bkb � �ikbc�bjc�bka= 0[F̂ ij; Bab] = 0 (simile)[F̂ ij; Bba] = 12 Pk;c�bicbjcbk�bkb +�bicbjc�bkb bka � bic�bjcbka�bkb � bic�bjc�bkb bka�bka�bkb�bicbjc � �bkb bka�bicbjc + bka�bkb bic�bjc + �bkb bkabic�bjc= 12 Pk;c��ikacbjc�bkb + �jkbc bka�bic + �jkcb�bicbka � �ikac�bkb bjc � �jkac�bkb bic+�ikbc�bjcbka � �ikac�bjcbka + �jkac�bkb bic= 0



2.2. THE OSP(2N,2N) AND THE FLAVOR SECTOR 17The calculations for the pure fermionic and the mixed generators are verysimilar and will thus be omitted. 22.2.2 The Tensor Space Representation of the SO(N)To deal with the de�nition of the 
avor sector we will now use the tensor spacerepresentation of the SO(N). Thus we can characterize the color neutral stateusing invariant tensors of the SO(N). A general introduction to this method isgiven in [Tung 85]. We can summarize the ideas as follows:The most arbitrary state of the Fock space can be described in terms of:jstatei =XF i1i2���ikA1A2���Ak�ci1A1 : : : �cikAk j0iIf R 2 SO(N) is now a rotation in color space, such a state transforms as anumber of copies of the vector representation �ciA 7! PRij�cjA. If jstatei is nowsupposed to be color-neutral, then F̂ jstatei = 0 has to hold by de�nition. Butthis means that F i1i2���ikA1A2���Ak has to be composed of SO(N) invariant tensors in thecolor indices only.For the SO(N) there are two relevant types of invariant tensors8 (cf.[Tung 85]):1. The tensor �ij given by the metric being kept invariant by the SO(N). Sincewe are dealing with a positive de�nite metric this tensor can be written inmatrix form by � = 1N .2. The total anti-symmetric tensor of rank N, �i1:::iN . This tensor guaranteesthat the elements of the SO(N) preserve the orientation, i.e. that the de-terminant of the orthogonal transformation is +1, as required by the virtueof it being a "special" group.

8Another invariant tensor is { quite naturally { the � tensor. But this tensor is only of minorimportance; its rôle for the Gl(N) is here being played by �. For a detailed discussion compare[Tung 85], ch. 13.



18 CHAPTER 2. COLOR-FLAVOR TRANSFORMATION2.2.3 A Simple ExampleLet us now see what happens in a low-dimensional example:Example: The so(2) and the osp(2,2)The osp(2,2) generators are summarized in this table:B11 = 2Xi=1 �bi�bi F 11 = 0 G11 2Pi=1�bi �f iB11 = 12 2Pi=1 bi�bi + �bibi F 11 = 12 2Pi=1 f i �f i � �f if i G11 = 2Pi=1�bif iB11 = 2Pi=1 bibi F11 = 0 ~G11 = 2Pi=1 bi �f iG11 = 2Pi=1 bif iThe 
avor states are:j
avori =X� f�1:::�2k(�)�ci1�1 : : : �ci2k�2k �i�(1)i�(2) : : : �i�(2k�1)i�(2k)where � 2 S2k, � 2 f�; �g and f�1:::�2k(�) is an arbitrary factor. Ifwe now have states with more than one anti-symmetric tensor in therepresentation above, something very interesting happens: Each pairof �-tensors can be represented in terms of some �-tensors:�ij�kl = �ik�jl � �il�jk (2.7)This equality is obtained by proper contraction from the wellknown fact that the product of a full antisymmetric co- and a fullantisymmetric contravariant tensor can be expressed in terms of theunit tensor �. By this fact we can restrict ourselves to the case withnone or one anti-symmetric tensor being present in the representation.Applying this to our states we arrive at the following 2-particlestates in the color neutral sector:�b1�b1 +�b2�b2j0i 12 ��b1�b2 � �b2�b1� j0i = 0�b1 �f 1 +�b2 �f 2j0i 12 ��b1 �f 2 � �b2 �f 1� j0i�f 1 �f 1 + �f 2 �f 2j0i = 0 12 � �f 1 �f 2 � �f 2 �f 1� = j0i = 12 �FBj0i (2.8)It is not di�cult to see that the states on the right hand sideare reachable from the baryonic state, whereas the states on the lefthand side are generated by multiple action on the vacuum. Thereis no possibility to reach a state on the left from the right and viceversa by any osp action. When we consider higher-particle states weobserve the same behavior.



2.2. THE OSP(2N,2N) AND THE FLAVOR SECTOR 19This simple example illustrates the principal idea behind the tensor-spacerepresentation and gives us some idea of how to relate it to the algebraic repre-sentation of the 
avor sector in higher dimensions.2.2.4 The Irreducibility TheoremThe generalization of (2.7) to dimensions N > 2 is now crucial for the furtherproceedings. It is achieved by the following lemma:Lemma 2.3 The product of two anti-symmetric tensors can be written in termsof linear combinations of products of the metric:�i1:::ik�j1:::jk = �������� �i1j1 � � � �i1jk... . . . ...�ikj1 � � � �iN jk �������� (2.9)Proof: By acting with �ij k-times on ���� we get the covariant tensor ����. Wecan then apply the fact (cf. [Sexl 76] for a proof) that�i1���iN �j1���jN = �i1���iNj1���jNand use �ij afterwards on �i1���iNj1���jN to arrive at the statement above. 2Thus the �nal ingredient is no longer di�cult to prove:Lemma 2.4 The elements of the 
avor sector can be written in tensor spacerepresentation in the following form:j
avori =X fA1:::A2k(�)�i�(1)i�(2) : : : �i�(2k�1)i�(2k)�ci1A1 : : : �ci2kA2k j0iorj
avori =XX fA1:::A2k+N (�)�i�(1)i�(2) : : : �i�(2k�1)�i�(2k)�i2k+1���i2k+N���ci1A1 : : : �ci2kA2k�ci2k+1A2k+1 : : : �ci2k+NA2k+N j0i (2.10)Remark: As soon as there are two or more bosons of same 
avor among thegenerators that we contracted with the � tensor, the whole expression vanishes,of course.Proof: Since � and � are the only relevant invariant tensors, all elements ofthe 
avor sector (i.e. those elements of the Fock space that are invariant underSO(N) rotations) can be written in terms of the invariant tensors of this group,as indicated above. 2We �nally arrive at the following theorem:Theorem 2.3 (Irreducibility Theorem) The generators of the osp(2n,2n) al-gebra act irreducibly on each of the disconnected subsectors of the 
avor sector.



20 CHAPTER 2. COLOR-FLAVOR TRANSFORMATIONProof: This theorem can now easily be proven by collecting our lemmata andnoting that X �ci1A1 : : : �cikAk�i�(1)i�(2) : : : �i�(k�1)i�(k)j0i (2.11)can be reached by multiple action of �ciA�cjB�ij (which is then Bab, F ab or Gab,respectively) on the vacuum. Elements of the formX �ci1A1 : : : �cikAk�cik+1Ak+1 : : : �cik+NAk+N �i�(1)i�(2) : : : �i�(k�1)i�(k)�ik+1:::ik+N j0i (2.12)can now also be reached by multiple osp(2n,2n) action through:1. If �k+1 = : : : = �k+N = F thenF ak+1a : : : F ak+Na �FB(a)j0iwhere �FB(a) denotes the Fermi baryonic state with 
avor a.2. If (without loss of generality) �k+1 = B and �k+2 = : : : = �k+N = F thenGak+1a F ak+2a : : : F ak+Na �FB(a)j0i (2.13)yields the right state.3. For �k+1 = �k+2 = B and �k+3 = : : : = �k+N = F we have to look closerat the 
avor of our bosons: If now a1 = a2 the state is killed. This can beproven by calculating the multiple action of GabGab . For a1 6= a2 we arriveat: Gak+1a Gak+2a F ak+3a : : : F ak+Na �FB(a)j0iThis result can be understood quite intuitively: Having more than oneboson (i.e. commuting operator) of the same type coupled to the totalanti-symmetric tensor means that the whole tensor must vanish.This scheme can be trivially enlarged to a larger count of bosons. However itis important to stress that as soon as there are two or more bosons of the same
avor present the whole state vanishes. This reproduces precisely the behaviorof the � tensor. The creators not coupled to � are taken care of by { as above {the metric tensor. 2Remark: Since every state of each of the parts of the 
avor sector can bewritten as described in (2.11, 2.12, 2.13) it is easy to see that we can reach thevacuum j0i viz. the Fermi-baryonic state �FB(a)j0i quite naturally by acting withthe corresponding "inverses" on these states, i.e. with Bab on Bab, Bab on Bba andso forth. Thereby we can reach every state of each of the two parts by a multipleaction of color singlet operators on some "start" state.



2.3. CONSTRUCTION OF THE PROJECTOR 212.3 Construction of the Projector2.3.1 The Action of Osp(2nj2n)In order to obtain our generalized coherent states we have to de�ne an action ofthe Osp(2nj2n) on our Fock space. This action must actually be a Lie supergrouphomomorphism. Since our 
avor sector decomposes into two unconnected partswe have the freedom to choose di�erent actions on them. To ease notation wewill change the block structure of the matrices representing the elements of thegroup viz. algebra. While until now we had g =  A BC D ! with A representingthe BB-sector etc., we will now order the elements so that A represents the �ccsector, B the �c�c sector, C the cc sector, and �nally D the c�c sector. We thende�ne the action T 0g on the subsector containing the vacuum:T 0g = exp n�ciA(lnA)ABciB + �ciA(lnB)AB�ciB + ciA(lnC)ABciB + ciA(lnD)AB�ciBowhereas the action TBg on the other subsector that contains the baryonic Fermistates is going to be:TBg = exp n�cîA(lnA)ÂB̂cîB + �cîA(lnA)Â(e;F )�ci(e;F )+ci(e;F )(lnA)(e;F )B̂cîB + ci(e;F )(lnA)(e;F )(e;F )�ci(e;F )+�cîAB̂(lnB)Â�cîB + �cîA(lnB)Â(e;F )ci(e;F )+ci(e;F )(lnB)(e;F )B̂�cîB + ci(e;F )(lnB)(e;F )(e;F )ci(e;F )+cîA(lnC)ÂB̂cîB + cîA(lnC)Â(e;F )�ci(e;F )+�ci(e;F )(lnC)(e;F )B̂cîB + �ci(e;F )(lnC)(e;F )(e;F )�ci(e;F )+cîA(lnD)ÂB̂�cîB + cîA(lnD)Â(e;F )ci(e;F )+�ci(e;F )(lnD)(e;F )B̂�cîB + �ci(e;F )(lnD)(e;F )(e;F )ci(e;F )oThe di�erence between T 0g and TBg lies in the rôle of the fermion annihilatorsof 
avor e: In the vacuum subsector they are actually just the ordinary fermionannihilators while in the subsector containing �FB(e)j0i they act like hole-creatorsand are thus treated on an equal footing with the other fermion creators �f îa. Âviz. â denotes here the 
avor indices that cover the complete 
avor range exceptthose fermions viz. particles with 
avor e.The well-de�nedness of the logarithm of a general element of the Gl(njn) wasshown in [Zirn 96a]. The same argument applies here mutatis mutandi.Lemma 2.5 The mapping g 7! Tg is on both subsectors a super-group homomor-phism.



22 CHAPTER 2. COLOR-FLAVOR TRANSFORMATIONProof: From [Helg 78] we learn that { for the di�erential of the exponentialmapping from any Lie algebra to the corresponding Lie group { we have:d expX = dLexpX(e) � 1� e�ad(X)ad(X), ddt �����t=0 exp nX + t _Xo = eX 1� e�ad(X)ad(X) (X) := eXTX(X)This formula extends easily to super-groups { here Osp(2nj2n); the set whereT �1X is well-de�ned is dense in the super-group. We continue setting g = expX,h(t) = exp tY 2 Osp(2nj2n):ddt �����t=0 T 0gh(t) = ddt �����t=0 T 0exp(X) exp(tY )= ddt �����t=0 T 0exp(X+T �1X (tY ))= ddt �����t=0 exp ��ciA �X + T �1X (tY )�(11)AB ciB+�ciA �X + T �1X (tY )�(12)AB �ciB+ciA �X + T �1X (tY )�(21)AB ciB+ciA �X + T �1X (tY )�(22)AB � �ciB= Texp(X) ddt �����t=0 exp ��ciA �TX � T �1X (tY )�(11)AB ciB+�ciA �TX � T �1X (tY )�(12)AB �ciB+ciA �TX � T �1X (tY )�(21)AB ciB+ciA �TX � T �1X (tY )�(22)AB � �ciB= ddt �����t=0 T 0g T 0h(t)The homomorphism T 0g on the vacuum subsector is thus { after integration {established. Since the form of the creator/annihilator pairs does not enter thisproof it applies without substantial change to TBg 9.29To make this plausible, note that Lemma A.1 applies to any combination of creators andannihilators.



2.3. CONSTRUCTION OF THE PROJECTOR 232.3.2 Construction of the Projector PThe Isotropy Subgroup K According to [Zirn 96b] K = Gl(njn) is theisotropy subgroup of the ortho-symplectic group we will integrate over. A possi-ble representation for this subgroup is the group of matrices k = diag(A, A�1T ).The action of these elements stabilizes the vacuum, as expected:T 0k j0i = exp ��ciA(lnA)ABciB + ciA(lnA�1T )AB�ciB� j0i= j0i exp �NXA (lnA�1T )AA!= j0i exp � STr ln(AT )�N�= j0i SDet A�Ndef= j0i�(k)Here �(h) is a one-dimensional representation of the Gl(njn). In the sameway we get: h0j �T 0k ��1 = ��1(k) h0j (k 2 K)The same has to be true for the baryonic subsector as well:TBdiag(A;A�1 T ) �FB(e)j0i = �FB(e)j0iSDetA�Nand also: h0jFB(e)Tdiag(A;A�1 T ) = SDetANh0jFB(e):The Parameterization of the Coset Space Now we need a parameterizationof the coset space G=K. This can be done in terms of two supermatrices Z; ~Z.We start with a characterization of the gH = Q 2 G=K in terms of the g 2 G.Taking �z = �z 
 12n we have:� : g 7! Q = g�zg�1 (2.14)a canonical projector from G to G=K, since k commutes with �z:k�z = �zk , � = k�zk�1Assuming now the elements of G to be written in the creator/annihilatorblock decomposition already introducedG 3 g =  A BC D !



24 CHAPTER 2. COLOR-FLAVOR TRANSFORMATIONwe take Z = BD�1 and ~Z = CA�1 and arrive at the Gaussian decompositionof g:Q =  A BC D ! 1 00 �1 ! A BC D !�1=  (A+BD�1C)(A� BD�1C)�1 �2B(D � CA�1B)�12C(A�BD�1C)�1 �(D + CA�1B)(D � CA�1B)�1 !=  1 Z~Z 1 ! 1 00 �1 ! 1 Z~Z 1 !�1We decompose now g = s(�(g))h(g) with � the projector above and s :G=K ! G a section of the bundle G over G=K. This section can then berepresented as:s(Z; ~Z) =  (1� Z ~Z)�1 Z(1� ~ZZ)�1~Z(1� Z ~Z)�1 (1� ~ZZ)�1 !=  1 Z0 1 ! (1� Z ~Z) 12 00 (1� ~ZZ)� 12 ! 1 0~Z 1 !This decomposition is said to "�x a gauge" in the following sense: Whenthinking ofG as a �ber bundle with base G=K and �berK, then � is the canonicalprojection from the �ber space onto the base. Now G can be seen as the �eldspace of a gauge theory with a gauge group K. "Fixing the gauge" means thenthat we separate the unphysical gauge degrees of freedom from the physical onesover which we want to integrate. This can be achieved by choosing a smoothmap s : G=K ! G in such a way that � � s = id. s distinguishes then somesubmanifold M� G which is then (locally) isomorphic to G=K.We obtain the action { which is in fact an operator on F { of the Osp(2nj2n)on the Fock space by exponentiating the product of the block matrices with somebilinear combination of the super-creators and annihilators:T 0s(�(g)) = T 0( 10 Z1 )T 0� ln(1+Z ~Z)+1=20 0ln(1+ ~ZZ)�1=2�T 0( 1~Z 01)= exp ��ciAZAB�ciB� exp��ciA12 ln(1� Z ~Z)ABciB��ciA12 ln(1� ~ZZ)AB�ciB� exp �ciA ~ZABciB�For the baryonic action we get in the same way:TBs(�(g)) = exp n�cîAZÂB̂cîB + �cîAZÂ(e;F ) �f ie + f ieZ(e;F )B̂cîB + f ieZ(e;F )(e;F ) �f ieo�



2.3. CONSTRUCTION OF THE PROJECTOR 25� exp 12 ��cîA �ln(1� Z ~Z)�ÂB̂ cîb + �cîA �ln(1� Z ~Z)�Â(e;F ) �f ie++ f i(e;F ) �ln(1� Z ~Z)�(e;F )B̂ cîA + f ie �ln(1� Z ~Z)�(e;F )(e;F ) �f ie��� exp ncîA ~ZÂB̂�cîB + cîA ~ZÂ(e;F )f ie + �f ie ~Z(e;F )B̂�cîB + �f ie ~Z(e;F )(e;F )f ieoWhen acting with T 0g on the vacuum j0i and TBg on the Fermi-baryonic state�FB(e)j0i we arrive at a set of generalized coherent states10 jZi0 and jZiB, as canbe seen by expansion in power series.T 0s(Z; ~Z)j0i = exp (�ciAZAB�ciB) j0i SDet �1� ~ZZ�N=2 def= jZi0h0jT 0�1s(Z; ~Z) = SDet �1� ~ZZ�N=2 h0j exp ��ciA ~ZABciB� def= 0hZjTBs(Z; ~Z) �FB(e)j0i = exp ��cîAZÂB̂�cîB + �cîAZÂ(e;F )f ie + f ieZ(e;F )Â�cîA++f ieZ(e;F )(e;F )f ie�� �FB(e)j0iSDet �1� ~ZZ�N=2 def= jZiBh0jFB(e)T TD�1s(Z; ~Z) = SDet �1� ~ZZ� h0jFB(e) exp ��cîA ~ZÂB̂cîB � cîA ~ZÂ(e;F ) �f ie�� �f ie ~Z(e;F )B̂cîB � f ie ~Z(e;F )(e;F )f ie� def= BhZjWe are now ready to de�ne the projector P on the 
avor sector:P def= ZMB�MF DgHT 0g j0ih0jT 0�1g + ZMB�MF DgHTBg �FB(e)j0ih0jFB(e)TB�1g (2.15)Theorem 2.4 The projector P in (2.15) is identical to unity on the 
avor sectorand vanishes elsewhere. Hence P projects the super-Fock space onto the 
avorsector.Proof: Due to the translation invariance of the integration measure undergH 7! g0gH (cf. [Zirn 96a]) we have:Tg0P sector = Z DgHTg0TgjstateihstatejT�1g= Z DgHTg0gjstateihstatejT�1g= Z DgHTgjstateihstatejT�1g�10 g= Z DgHTgjstateihstatejT�1g Tg0 = P sectorTg0where jstatei is in nj0i; �FBj0io. Since the action of the Osp on each of thesubsectors of the 
avor sector is irreducible and every Tg0 commutes with its10cf. [Pere 86]



26 CHAPTER 2. COLOR-FLAVOR TRANSFORMATIONcorresponding P sector, we have then by Schur's lemma that each P sector is a projec-tor on its subsector proportional to the identity on this very subsector and zeroelsewhere. Thus the sum P = P0 + PB is a projector on the 
avor sector. Tocalculate now the constant of proportionality we continue as follows:By taking Tg = Ts(�(g))Tk(g) we getTgjstatei = Ts(�(g))Tk(g)jstatei = Ts(�(g))jstatei� (k(g))hstatejT�1g = ��1 (k(g)) hstatejT�1s(�(g))and thus TgjstateihstatejT�1g = Ts(�(g))jstateihstatejT�1s(�(g)): (2.16)which lets us arrive atP = Z DgHT 0g j0ih0jT 0�1g + Z DgHTBg �FBj0ih0jFBTB�1g= Z D(Z; ~Z)jZi0 0hZj+ Z D(Z; ~Z)jZiB BhZj: (2.17)By calculation of the vacuum and baryonic expectation value we can extractthe constant of proportionality.h0jPj0i = Z D(Z; ~Z)h0jZi0 0hZj0i = Z D(Z; ~Z) SDet(1� ~ZZ)N= R D�N(Z; ~Z) = 1h0jFBP �FBj0i = R D(Z; ~Z)h0jFBjZiB BhZj �FBj0i= R DgH SDet(1� ~ZZ)N = R D�N(Z; ~Z) = 1Obviously the expectation value of P0 vanishes on the baryonic subsectorwhereas PB yields zero expectation value on the vacuum subsector. Thereforewe can conclude that P is actually the identity on the 
avor sector. Since the gen-eralized coherent states are color singlet subsectorhZj vanishes outside its subsector{ cf. lemma 2.2. 22.3.3 The Bose-Fermi Coherent StatesThe Bose-Fermi coherent states are de�ned as being generated by exp (�ciA iA).Here the  's are super-variables, that are supposed to ful�ll the usual super-commutation relations: �ciA iA = (�1)jAj iA�ciA



2.3. CONSTRUCTION OF THE PROJECTOR 27The states generated thus from the vacuum obviously cover the entire Fockspace. In fact they form the Grassmann envelope (cf. [Bere 87]) of the Z2 gradedspace of bosonic and fermionic many-particle states.These states can be easily projected on our 
avor sector by means of orthog-onal rotations �ciA 7! Oij�ciA in color space. Averaging over all such rotations wearrive at a representation of the projector P on the 
avor space11:P exp ��ciA iA� j0i = ZSO(N) dO exp �Oij�cjA iA� j0i (2.18)Here dO is the (translation invariant) Haar-measure on the special orthogonalgroup (cf. [Rich 81]). To see that (2.18) is true consider the following:Take T 0O = exp n(lnO)ijF̂ ijo and write then12:P exp ��ciA iA� j0i = ZSO(N) dOT 0O exp �ciA iAj0i (2.19)We have then if jstatei 2 fj
avorig:Pj
avori = j
avori;since this is true for each T 0Oj
avori = j
avori. For an arbitrary state jstateiand T 0~O = expfs � F̂ ijg by the translation invariance of dO:Pjstatei = T 0~OPjstateiand after di�erentiation by s:̂F ijPjstatei = 0thereby proving that P is really a projector onto the 
avor sector.

11In fact, this is actually a way to de�ne this projector.12This equality is proven in detail in appendix C.



28 CHAPTER 2. COLOR-FLAVOR TRANSFORMATION2.4 The ProofAs we now have the two expressions for the projector at hand we can �nally provethe color-
avor transformation (2.1):ZSO(N) dO exp � � iAOij jA�= ZSO(N) dO h0j exp � � iAciA� exp ��ciAOij jA� j0i= h0j exp � � iAciA�P exp (�ciA iA) j0i= h0j exp � � iAciA��Z D(Z; ~Z)jZi0 0hZj+ Z D(Z; ~Z)jZiB BhZj��� exp ��ciA iA� j0i= Z D�N(Z; ~Z) h0j exp � � iAciA� exp ��ciAZAB�ciB� j0ih0j exp ��ciA ~ZABciB��� exp ��ciA iA� j0i++Z D�N(Z; ~Z) h0j exp � � iAciA� exp ��cîAZÂB̂�cîB + �cîAZÂ(e;F )f ie + f ieZ(e;F )B̂�cîB��� �FB(e)j0ih0jFB(e) exp �cîA ~ZÂB̂cîB + cîA ~ZÂ(e;F ) �f ie + �f ie ~Z(e;F )B̂cîB� exp (�ciA iA) j0i= Z D�N(Z; ~Z) exp � � iAZAB � iB +  iA ~ZAB iB� ++ Z D�N(Z; ~Z) exp � � îAZÂB̂ � îB + � îAZÂ(e;F ) i(e;F ) +  i(e:F )Z(e;F )B̂ � îB ++ îA ~ZÂB̂ îB +  îA ~ZÂ(e;F ) � i(e;F ) + � i(e;F ) ~Z(e;F )B̂ îB� 2 (2.20)



Chapter 3Random Bond Ising ModelIn this chapter we will derive a non-linear sigma model for the random-bondIsing model. This is achieved by mapping the RBI onto a network model whichis similar to the Chalker-Coddington model. Taking the continuum limit of thenetwork model we would arrive at the non-linear sigma model.3.1 The Network ModelIn this section we give a brief review of how to arrive at the network model.This procedure was outlined in an article by Cho and Fisher [Cho 97]. Moreinformation can be gained from this paper and from [Ho 96] and [Lee 94].We start with an interaction Hamiltonian similar to the classical 2D Isingmodel: H = �Xhi;ji Jij�3i �3j (3.1)The coupling constant for the link (i; j), Jij, can have a positive or a nega-tive sign while the absolute value of J is the same for all links. By taking ananisotropic continuum limit in one direction (which is referred to as the "time"direction; cf. [Kogu 79]) we arrive at a 1D time-continuum equivalent represen-tation: H =X �1�1n + �2�3n�3n+1A change in the signs of all Jij in the Hamiltonian (3.1) corresponds to achange of sign for �1;2. Thus setting � = �(n; �) { making it a function of spaceand time { incorporates the randomness.To arrive at a fermionic representation we introduce the Majorana �elds�1(n) = 1p2 Ym<n �1m�2n; �2(n) = 1p2 Ym<n�1m�3n29



30 CHAPTER 3. RANDOM BOND ISING MODELthat anticommute:f�1(n); �2(n0)g = 12 0@ Ym<n�1m Ym0<n0 �1m0�2n�3n0 + Ym0<n0 �1m0 Ym<n�1m�3n0�2n1Aassumen<n0= 12 0@ Yn�m0<n0 �1m0�2n�3n0 + Yn�m0<n0 �1m0�3n0�2n1A= 12 Yn�m0<n0 �1m0f�2n; �3n0g = 0We can now express the Hamiltonian in terms of these �elds:H = (�2i)Xn [�1�1(n)�2(n)� �2�1(n)�2(n + 1)]since �1(n)�2(n) = 12 Ym<n �1m�2n Ym0<n�1m0�3n= 12�2n�3n = i2�1nand in the same way �1(n)�2(n+ 1) = 12�2n�1n�3n+1= �i2 �3n�3n+1:Taking another set of (independent) Majorana �elds �1(n); �2(n) and taking i = 1p2 (�i + i�i) we arrive at a Dirac fermion representation withHDirac = Xn (�i�1) h y1(n) 2(n)�  y2(n) 1(n)i++(i�2) h y1(n) 2(n + 1)�  y2(n+ 1) 1(n)i :The mixed terms in � and � cancel precisely, as expected.Writing then the partition function in terms of a functional integral overGrassmann �elds we get Z = Z D( ; � ) exp(�S)with the action



3.1. THE NETWORK MODEL 31S = Z� Xn [ � 1(n)@� 1(n) + � 2(n)@� 2(n)] +HDirac( ; � ):When reinterpreting time as a (continous) spatial coordinate and trading Sfor a 2D Hamiltonian of (chiral) fermions, we arrive at a picture of a stack of 1Dright/left movers:H2D = Z dxXn  yRn(i@x) Rn +  yLn(i@x) Ln++�1( yRn Ln +  yLn Rn)++�2( yRn Ln+1 +  yLn+1 Rn) (3.2)with the chiral fermions Rn = (�1)n 1(n)  yRn = i(�1)n � 1(n) Ln = (�1)n 2(n)  yLn = i(�1)n � 2(n):This Hamiltonian corresponds to the situation depicted in �gure 3.1. Theenergy eigenvalues are given byE2 = p2x + �21 + �22 + 2�1�2 cos pwith px the x-component of the momentum and p the transverse momentum{ p 2 [��; �]. The energy is minimal for px = 0 and p = �. It is then denotedby Emin = �j�j with � = �1 � �2. An incident wave with E = 0 will decay withexp(�j�jx). The decay length � � j�j�1 approaches in�nity for the pure Isingmodel with � = 0. This clearly describes the extended states and the long rangeorder at the critical point. The critical exponent is then { as would be expected{ � = 1.Figure 3.1 can now be interpreted in terms of a Chalker-Coddington networkmodel. This is done pictorialy in �gure 3.2 (a). To establish a connection betweenour � s and the � s of the network model we take a closer look at �gure 3.2 (b):Following [Chal 88] we assign a transfer matrix to the node P (00). �P (00);1�P�ex(01);2 ! =  cosh �1 sinh �1sinh �1 cosh �1 ! �P (01);1�P (00);2 !This transfer matrix conserves the current; it can be rewritten as a S-matrixand takes the form �P (00);1�P (00);2 ! = 1cosh �1  1 � sinh �1sinh �1 1 ! �P (01);1�P�ex(01);2 ! : (3.3)Since the tunneling probability in (3.2) is proportional to �2i we can identifytanh(�i) with �i.



32 CHAPTER 3. RANDOM BOND ISING MODEL
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Figure 3.2: (a) Mapping of (3.2) onto a CC network model. (b) A close-up ofa single node.



3.2. INTRODUCING DISORDER 333.2 Introducing DisorderAs already explained in sec. 3.1 and in the introduction, disorder enters withthe sign of the coupling constant J . This O(1) randomness is transfered to thenetwork model, where it corresponds to a randomness in the sign of the � s.Since cosh � is an even function in the argument � we have no randomness inthose terms, but only in those with tanh �.To arrive at a non-linear sigma model we proceed by calculating the disorderaveraged expectation value for an operator that bears some resemblance to theconductance operator in the Chalker Coddington network model. This is justi�edby the fact that we expect only one relevant length scale for two-point correla-tion functions. The spin-correlation length for the 2D Hamiltonian (3.2) shouldtherefore behave in the same way as the decay length � for the conductance g. Mand N denote in the following two speci�c links between which the conductanceis to be calculated. To arrive at an expression for g we follow the approach of[Zirn 97] for the original Chalker-Coddington model.When taking two arbitrary links within the network and trying to calculate theaveraged mean conductance by the Landauer-B�uttiker formula gMN = jSMN j2, weneed to calculate an expression for the S-matrix SMN . We are then interested inthe stationary states. They are determined by the Schr�odinger equation U = � with U = exp(iHt) the time evolution operator. While the eigenphases � canbe gauged away, we still have to solve the remaining equation. This is done byiteration; we obtain gMN = jSMN j2 = ���hlM j ~T jlNi���2with ~T = U +UU 0U +UU 0UU 0U + : : : = (1�UU 0)�1U 0 where U denotes theone-step operator living in link-space that governs how the probability amplitudesare scattered at the nodes and U 0 denotes the phase that is picked up duringthe transmission of a link1. The operator ~T describes how the complete latticeevolves over time. For our convenience we drop the last U in the followingcalculations. This will not change the behavior dramatically since we loose onlythe last scattering process. Thus we �nally arrive at the operator T = (1�U)�1that we will use to construct the sigma-model.3.2.1 Rewriting the Matrix ElementsTo proceed we need to express the matrix element hlM jT jlNi and its conjugate interms of a Gaussian integral over super-numbers � (cf. section 1.2.3). Thus weget:1U 0 is obviously diagonal in link-space and has the same value for all links. We thus cantake it to be the identity operator and drop it in the subsequent discussion.



34 CHAPTER 3. RANDOM BOND ISING MODELhlN j(1� U y)�1jlMihlM j(1� U)jlNi= Z Yp;t D ��; �����B(lN )���B(lM)�+B(lM)��+B(lN )�� exp8<:� Xp;t;p0;t0;� ��+�(p0; t0) [� ((p0; t0); (p; t))� U ((p0; t0); (p; t))]�+�(p; t)9=;� exp8<:� Xp;t;p0;t0;� ����(p0; t0) h� ((p0; t0); (p; t))� U y ((p0; t0); (p; t))i���(p; t)9=;(3.4)For clarity we have dropped the Einstein summation convention. The inte-gration measure is written in shorthand and is supposed to stand for the "
at"Berezin measure over all � s on all links in all 
avors:Yp;t D ��; ���=Yp;t D ����(p; t); ����(p; t)�=YP;tD ����(P (00); t); : : : ; ���(P (11); t); ����(P (00); t); : : : ; ����(P (11); t)�Again: for notational convenience we have introduced an alternative systemof labeling the nodes: When referring to a sum over all nodes we replace theP (00); : : : notation by p, which is supposed to run over all nodes.3.2.2 Performing the Disorder Average for p = 12The next step is to take the disorder in the coupling into account. We thereforehave to average over the O(1) group when taking p = 12 in equation (1.2). Todo so, we obviously need the precise dependence of the operator U on the groupelements. Since U can only couple to two adjacent links, we get the followingexpression:U (1)p00 �(p0; t0); (p; t)� = Jcosh �1 �(p0; p00)�h�(t0; 1)�(t; 2)�(p00 + ey; p)++�(t0; 2)�(t; 1)�(p00 � ey; p)i+Op sinh �1h�(t0; 1)�(t; 1)�(p00 � ey; p)���(t0; 2)�(t; 2)�(p00 + ey; p)i�Here p00 takes only values in the nodes that are actually occupied by a �1.This can be read o� from eqn. (3.3) and �gure 3.2 (b). A very similar expressionholds for �2 sites. The (node-dependant) Op is the O(1) factor, i.e. takes valuesin f+1;�1g.



3.2. INTRODUCING DISORDER 35We are now in the position of being able to apply the color-
avor transforma-tion (2.1) to this situation, thus taking the disorder average from an integrationover the O(1) to an integration over the homogenous super-space. The fact thatwe integrate over the O(1) { and not the SO(1) { leads us to lose the baryonicterm in (2.1). Thus we get after the transformation:Z Yp D� �Z(p); ~Z(p)� Z Yp;t D ��(p; t); ��(p; t)���B(lN)���B(lM)�+B(lM)��+B(lN)�� exp8<:� XP;t;�=�;� ���� (P (00); t)��� (P (00); t) + ���� (P (11); t)��� (P (11); t)++���� (P (01); t)��� (P (01); t) + ���� (P (10); t)��� (P (10); t)++J XP;�=�;� 1cosh �1 h���� (P (00); 1)��� (P � ex(10); 2) + ���� (P (00); 2)��� (P (10); 1)++ ���� (P (11); 1)��� (P (01); 2) + ���� (P (11); 2)��� (P + ex(01); 1)i++ 1cosh �2 h���� (P (01); 1)��� (P + ey(00); 2) + ���� (P (01); 2)��� (P (00); 1)++ ���� (P (10); 1)��� (P (11); 2) + ���� (P (10); 2)��� (P � ey(11); 1)i++J XP;t;t0�=�;�;�0 tanh �1 h���� (P (00); t)ZP (00)�t�0t0 ����0 (P (00); t0) + ���� (P (11); t)ZP (11)�t�0t0 ����0 (P (11); t0)++��� (P � (t� 1)ex(10); t) ~ZP (00)�t�0t0���0 (P � (t0 � 1)ex(10); t0)++ ��� (P + (2� t)ex(01); t) ~ZP (11)�t�0t0���0 (P + (2� t0)ex(01); t0)i++tanh �2 h���� (P (01); t)ZP (01)�t�0t0 ����0 (P (01); t0) + ���� (P (10); t)ZP (10)�t�0t0 ����0 (P (10); t0)++��� (P + (t� 1)ey(00); t) ~ZP (01)�t�0t0���0 (P + (t0 � 1)ey(00); t0)++ ��� (P � (2� t)ey(11); t) ~ZP (10)�t�0t0���0 (P � (2� t0)ey(11); t0)i ) (3.5)We are now ready to integrate out the super-vectors. Since we have termsof form ����, ��� and �� we cannot use the ordinary Gauss formula, but have toapply the formula derived in appendix D. For this we have to write down the



36 CHAPTER 3. RANDOM BOND ISING MODELmatrix M as introduced in the notation of the appendix. This is { in principle{ no problem, but requires some careful notation for large lattices. We will seewhat M looks like in the case of a small lattice.Example: A Single PlaquetteConsider a network consisting of a single plaquette as shown in�gure 3.3. We can now write down the matrix M using equation(3.5).
M =

0BBBBBBBBBBBBBBB@
1 0 i�ycosh �2 0 Z(00) 0 0 00 1 0 i�ycosh �1 0 Z(01) 0 0i�ycosh �1 0 1 0 0 0 Z(10) 00 i�ycosh �2 0 1 0 0 0 Z(11)~Z(01) 0 0 0 0 0 0 00 ~Z(11) 0 0 0 0 0 00 0 ~Z(00) 0 0 0 0 00 0 0 ~Z(10) 0 0 0 0

1CCCCCCCCCCCCCCCAHere the �y s denote the standard Pauli matrices and the Z sinclude the tanh s and J s. The whole matrix is principially gradedin  ; � with the block matrices being denoted by A;B;C and D asusual. The smaller grading is in the node parameter 00; 01; : : :. Thematrix entries are matrices in their own right and have entries for theinteraction between the link types (i.e. 1, 2). For clarity we suppressthe boson/fermion grading.To obtain now the lattice action we have to apply corollary D.1.To be able to do so we must make M Osp symmetric. This is doneby introducing a factor 12 in block matrix A thus getting A0 and thenexchanging the  's and � 's to arrive at a D = �A0T matrix. Further-more we have to multiply the two lower block matrices with ��. Wehave thenhgMNi = Z Yp D� �Z(p); ~Z(p0)� SDet�1M 0A0k1(M)k2(N)BB A0k2(N)k1(M)BBWe now have to note thatD� �Z(p); ~Z(p)� = SDet �1� Z(p) ~Z(p0)� :From this we can read o� the lattice �eld theory:h�i = Z Yp D �Z(p); ~Z(p)� � exp n�Slattice[Z(p); ~Z(p)]o (3.6)
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Figure 3.3: An easy example network to demonstrate the structure of M .with lattice actionSlattice[Z(p); ~Z(p)] = ln SDetM � ln SDet �1� ~Z(p)Z(p)�where the last term stems from the measure. In this discussion wehave neglected terms that might occur through boundary conditions.Obviously the lattice �eld theory derived in the example above can be gener-alized to arbitrary lattices, so that (3.6) still holds. The general form of M canbe read o� from (3.5). Writing it with Kronecker-deltas we get:A = �XX0�Y Y 0�xx0�yy0�tt0���0++J(1� �tt0)���0 n(cosh �1)�1�Y Y 0�xy�yy0 h�x01�x0 ��t1�(X�1)X0 + �t2�XX 0�++�X00�x1 ��t1�XX0 + �t2�(X+1)X0�i++(cosh �2)�1�XX0�xx0�x0y0 h�y1�y00 ��t1�(Y +1)Y 0 + �t2�Y Y 0� ++�y0�y01 ��t1�Y Y 0 + �t2�(Y �1)Y 0�ioZ = J �XX0�Y Y 0�xx0�yy0�XX00�Y Y 00�xx00�yy00 Z(X00Y 00)(x00y00)�t�0t0 �� [tanh �1�xy + tanh �2(1� �xy)]~Z = J �XX0�Y Y 0�xx0�yy0 Z(X00Y 00)(x00y00)�t�0t0 �� ntanh �1 (1� �xy)�x00y00�yx00 h�x1 ��t1�XX00 + �t2�X(X00�1)�+



38 CHAPTER 3. RANDOM BOND ISING MODEL+�x0 ��t1�X(X00+1) + �t2�XX00�i++tanh �2 �xy(1� �x00y00)�xx00 h�x1 ��t1�X(X00�1) + �t2�XX00�++�x0 ��t1�XX00 + �t2�X(X00+1)�iowhere X; Y are appropiate coordinates for P .3.2.3 Arbitrary Probability DistributionThe results in the last section were obtained for p = 12 in (1.2) only. To generalizethese results we have to integrate over SO(1) in order to arrive at a sigma modelfor p = 1. This is done in appendix E.Having the sigma model for both { p = 1 and p = 12 { we can now constructa sigma model for arbitrary probabilities p 2 [0; 1]. Note therefore thathÂ(O)ip = pÂ(1) + (1� p)Â(�1)= 2(1� p) "Â(1) + Â(�1)2 # + (2p� 1)Â(1): (3.7)If we examine now h�ip=1 and h�ip=1=2 { corresponding to an integration overSO(1) viz. O(1) respectivly { we notice thath�ip=1 = h�ip=1=2 + h�iBand further h�ip2[ 12 ;1] = h�ip=1=2 + �h�iBwith � 2 [0; 1]. We note thathÂ(O)ip=1=2 = Â(1) + Â(�1)2 = and hÂ(O)ip=1 = Â(1):Comparing this to (3.7) we get for p 2 [12 ; 1]:h�ip = h�ip=1=2 + �h�iBwith � = (2p� 1).



Chapter 4Conclusions and OutlookIn this work we obtained two important results { a mathematical and a physicalone:1. The color-
avor transformation for the SO(N),2. The lattice action for the network model corresponding to the random bondIsing model with binary probability distribution.The Color-Flavor Transformation for SO(N)The mathematical result is expected to be applicable to a wide range of physicalsystems, since it is valid for all models of universality class of type D { i.e.those with SO(N) symmetry. Among other possible applications let us mentionSNS-quantum dots at very low temperatures with time-reversal and spin-rotationinvariance broken by magnetic �elds viz. spin-orbit coupling.The Lattice Field Theory for the RBIThe lattice action we derived is the starting point for a continuum limit forthe network model. Basically this should be achieved in the same way as thecontinuum theory for the Chalker-Coddington network in [Zirn 97] for the integerQHE. Still, we expect some di�culties, since the corresponding Boltzmann weightW [Z; ~Z] = exp(�Slattice) = SDetM�1SDet(1 � ~ZZ) does not { at least trivially{ factorize. This sigma-model { given in terms of the coordinates for the cosetspace Z; ~Z { should in turn be evaluable, so that the critical exponents for thespin-correlation length along the phase boundary and along the Nishimori-linecan be extracted. If that was possible, we could compare these results to thoseobtained numerically.
39
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Appendix AThe osp(2n,2n) algebraConsider the following set of generators:Bab = �bia�bib F ab = �f ia �f ib Gab = �bia �f ibBba = 12 �bia�bib +�bibbia� F ba = 12 �f ia �f ib � �f ibf ia� Gba = �biaf ib ~Gba = bia �f ibBab = biabib Fab = f iaf ib Gab = biaf ibThese operators are obviously color singlet and will therefore sometimes bedenoted as Ĉab.Theorem A.1 The operators above form a representation of the osp(2n,2n) al-gebra.The linear structure property is rather obvious. To prove that they do indeedform an algebra, we have to show that some rule (X; Y ) 7! [X; Y ] exists. It hasto be bilinear and must ful�ll the following properties: (i) [X;X] = 0, and (ii)the Jacobi identity. The choice of the super-commutator is a good one. We willshow that the super-commutators remain within the algebra.A.1 PreliminariesIn order to arrive at the representation for the generators given above we willneed the following lemma:Lemma A.1 Let X�; X� be elements of an arbitrary algebra g in some matrixrepresentation with 2n � 2n matrices. Furthermore, let �cI ; cJ be creators viz.annihilators operating on some Fock space F with vacuum j0i. Here I; J denotea multi-index (i; �), where i = 1; : : : ; n is an arbitrary quantum number and� 2 fB;Fg distinguishes between bosonic and fermionic operators.The mapping X� 7! Y� = (c(1;B); : : : c(n;F ))X�0BB@ �c(1;B)...�c(n;F ) 1CCA41



42 APPENDIX A. THE OSP(2N,2N) ALGEBRAis an algebra homomorphism, i.e. preserves the Lie bracket and the vector spacestructure.Proof: We calculate the commutator of Y� an Y�:[Y�; Y�] = [cIX�IJ �cJ ; cKX�KL�cL]= X�IJX�KL (cI�cJcK�cL � cK�cLcI�cJ)= X�IJX�KL �(�1)jJjjKjcI�cL�JK � (�1)jJjjKjcIcK�cJ�cL�� �(�1)jIjjLjcK�cJ�IL � (�1)jIjjLjcKcI�cL�cJ��= X�IJX�KL �(�1)jJjjKjcI�cL�JK � (�1)jIjjLjcK�cJ�IL�= cIX�IJX�JL�cL � cKX�KLX�LJ �cJrenaming of var's= cIX�IJX�JL�cL � cIX�IJX�JL�cL= cIX�IJX�JL�cL � cIX�IJX�JL�cL= cI [X�; X�]IL�cLThe vector space structure is trivially preserved. 2This lemma can now be used to arrive at a "second quantized" form of the 's and ~ 's and their products introduced in 2.1. Since we know that ~  is anelement of the osp algebra, we simply set = 0BB@ b11 � � � b1n �b11 � � � �b1n f 11 � � � f 1n �f 11 � � � �f 1n... ...bN1 � � � bNn �bN1 � � � �bNn fN1 � � � fNn �fN1 � � � �fNn 1CCABy (2.4) we get then:
~ =

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

��b11 � � � ��bN1... ...��b1n � � � ��bNnb11 � � � bN1... ...b1n � � � bNn�f 11 � � � �fN1... ...�f 1n � � � �fNnf 11 � � � fN1... ...f 1n � � � fNn

1CCCCCCCCCCCCCCCCCCCCCCCCCCA



A.2. PURE GENERATORS 43Thus we get for ~  (n = 1, N = 2):~  = 0BBB@ ��b1b1 � �b2b2 ��b1�b1 � �b2�b2 ��b1f 1 � �b2f 2 ��b1 �f 1 � �b2 �f 2b1b1 + b2b2 b1�b1 + b2�b2 b1f 1 + b2f 2 b1 �f 1 + b2 �f 2�f 1b1 + �f 2b2 �f 1�b1 + �f 2�b2 �f 1f 1 + �f 2f 2 �f 1 �f 1 + �f 2 �f 2f 1b1 + f 2b2 f 1�b1 + f 2�b2 f 1f 1 + f 2f 2 f 1 �f 1 + f 2 �f 2 1CCCAFor larger n, N this scheme can be easily extended. This matrix has thestructure of an osp(2,2) element when given in matrix representation (cf. [Bere87]). Each of its entries can be identi�ed with a generator given at the beginningof this appendix1.A.2 Pure GeneratorsIn this and the following section we calculate the commutators of our osp gener-ators.Pure Bosonic Commutators The commutators that contain only bosoniccreators and annihilators have to be those of the symplectic group. They are:[Bab; Bcd] = 0[Bab; Bcd] = 0[Bab; Bcd] = biabib�bic�bid � �bic�bidbiabib The terms with mixed color indices commute trivially= bia�bid�bc + bib�bid�ac +�bicbib�ad + �bicbia�bd= Bda�bc +Bdb �ac +Bca�ad +Bca�bd[Bab; Bcd] = Bad�bc +Bbd�ac[Bab; Bcd] = �Bac�bd � Bbc�ad[Bab ; Bcd] = Bad�bc � Bcb�adThe remaining non-trivial commutators were obtained in the same way as[Bab; Bcd]. When comparing these results with the sp(2n) commutators (cf.[Pere 86]) one can see the right behavior.Pure Fermionic Generators To compute the commutators for the FF sec-tor generators (which are obviously bosonic) we follow the line of the precedingparagraph:1The elements of form �cc and c�c were written as 12c�c � �cc before. This corresponds to theaddition of some constants, which in turn does not change the commutators and therefore notthe algebra either.



44 APPENDIX A. THE OSP(2N,2N) ALGEBRA[F ab; F cd] = 0[Fab; Fcd] = 0[Fab; F cd] = f iaf ib �f ic �f id � �f ic �f idf iaf ib= f ia �f id�bc � f ib �f id�ac � �f icf ib + �f icf ia= F ca�bd � F da �bc � F cb �ad + F db �ac[Fab; F cd ] = Fad�bc � Fbd�ad[F ab; F cd ] = �F ac�bd � F bc�ad[F ab ; F cd ] = F ad �bc � F cb �adComparing these to the so(2n) generators, one identi�es the pure fermionicgenerators as those of the algebra in question.Mixed Pure Bosonic and Pure Fermionic Commutators All of the ninecommutators of form [B;F ] vanish, since the constituting creators and annihila-tors commute.A.3 Mixed GeneratorsWhen dealing with the mixed generators (i.e. those labeled with a 'G') one hasto take care of the fact that these generators are of fermionic nature. This impliesthe use of anti-commutators in the case of "pure mixed" commutators. This canbe seen when looking at the de�nition of the super-commutator [Zirn 96a].Commutators of Mixed and Pure Generators In this case we still haveto use the commutator. This can also be seen from the fact that a fermionand a boson certainly obey the normal commutation relation (In fact this is themotivation to de�ne the super-commutator in such a way).So this yields for the commutators of Gab:[Gab; Bcd] = 0[Gab; Bba] = 12 ��bia �f ibbic�bid + �bia �f ib�bidbic � bia�bid�bia �f ib � �bidbic�bia �f ib�= 12 ��bia �f ibbic�bid � �bid �f ib�ac � �bia �f ibbic�bid + �bia �f ib�bidbic � �bid �f ib�ac � �bia �f ib�bidbic�= ��bid �f ib�ac = �Gdb�ac[Gab; Bcd] = �bia �f ibbicbid � bicbid�bia �f ib= �bia �f ibbicbid � bic �f ib�ad � bid �f ib�ac � �bia �f ibbicbid= � ~Gbc�ad � ~Gbd�ac[Gab; F ab] = 0[Gab; F dc ] = Gad�bc[Gab; Fcd] = Gad�bc �Gac�bd



A.3. MIXED GENERATORS 45In the following we will omit the calculations and simply state the results.For Gab they are [Gab ; Bab] = 0[Gab ; Bdc ] = �Gdb�ac[Gab ; Bcd] = �Gcb�ad �Gdb�ac[Gab ; F cd] = Gad�bc �Gac�bd[Gab ; F dc ] = �Gac�bd[Gab ; Fcd] = 0For ~Gab we get [ ~Gba; Bcd] = Gdb�ac +Gcb�ad[ ~Gba; Bdc ] = ~Gbc�ad[ ~Gba; Bcd] = 0[ ~Gba; F cd] = 0[ ~Gba; F dc ] = ~Gda�bc[ ~Gba; Fcd] = Gad�bc �Gac�bdAnd �nally for Gab [Gab; Bcd] = Gdb�ac +Gcb�ad[Gab; Bdc ] = Gcb�ad[Gab; Bcd] = 0[Gab; F cd] = ~Gda�bc � ~Gca�bd[Gab; F dc ] = �Gac�bd[Gab; Fcd] = 0Commutators of Mixed Generators In this case, where we are calculatingthe super-commutator of two fermions, we have to use the anti-commutator:fGab; Gabg = biaf ibbicbid + bicf idbiaf ib= biabic(f ibf id + f idf ib)= 0fGab; ~Gdcg = Bac�bdfGab; Gcdg = Fbd�acfGab; Gcdg = F bd�ac +Bac �bdf ~Gba; ~Gdcg = 0f ~Gba; Gcdg = F bd�ac +Bca�bdf ~Gba; Gcdg = F bd�acfGab ; Gcdg = 0fGab ; Gcdg = Bac�bdfGab; Gcdg = 0



46 APPENDIX A. THE OSP(2N,2N) ALGEBRA



Appendix BThe so(N) Generator
B.1 Calculation of F̂ ijThe so(N) generators are obtained in a similar fashion to the osp generators.While for the osp we had to calculate ~  we will now go for  ~ (and again:n = 1, N = 2): ~ =  �b1�b1 + �b1b1 + f 1 �f 1 + �f 1f 1 �b1�b2 +�b1b2 + f 1 �f 2 + �f 1f 2�b2�b1 + �b2b1 + f 2 �f 1 + �f 2f 1 �b2�b2 +�b2b2 + f 2 �f 2 + �f 2f 2 !The elements on the diagonal vanish due to supersymmetry cancellation leav-ing a skew symmetric matrix as expected. The generator can then be read o�(general case) to be: F̂ ij = �biabja � bia�bja + �f iaf ja + f ia �f jaB.2 The CommutatorWith F̂ as given above we can now calculate the commutator:[F̂ ij; F̂ kl] = ��biabja � bia�bja + �f iaf ja + f ia �f ja� ��bkb blb � bkb�blb + �fkb f lb + fkb �f lb���(vice versa)= �biabja�bkb blb � �biabjabkb�blb � bia�bja�bkb blb + bia�bjabkb�blb+ �f iaf ja �fkb f lb + �f iaf jafkb �f lb + f ia �f ja �fkb f lb + f ia �f jafkb �f lb��bkb blb�biabja + bkb�blb�biabja +�bkb blbbia�bja � bkb�blbbia�bja� �fkb f lb �f iaf ja � fkb �f lb �f iaf ja � �fkb f lbf ia �f ja � fkb �f lbf ia �f ja47



48 APPENDIX B. THE SO(N) GENERATOR= �jkab�biablb � �liab�bkb bja + �ikabbja�blb � �jlabbkb�bia+�jlabbia�bkb � �ikabblb�bja � �jkabbia�blb + �ilabbkb�bja+�jkab �f iaf lb � �ilab �fkb f ja + �jlab �f iafkb � �ikab �f lbf ja+�jlabf ia �fkb � �ikabf lb �f ja + �jkabf ia �f lb � �ilabfkb �f ja= �jkab ��biablb � bia�blb + �f iaf lb + f ia �f lb�� �ilab ��bkb bja � bkb�bja + �fkb f ja + fkb �f ja���ikab ��blbbja � blb�bja + �f lbf ja + f lb �f ja�+ �jlab ��biabkb � bia�bkb + �f iafkb + f ia �fkb �= �jkF̂ il � �ilF̂ jk � �ikF̂ jl + �jlF̂ ikFrom this result we can read o� the structure constants of the algebra underinvestigation. Comparing these to the well known structure constants of theso(N) the identi�cation of the special orthogonal algebra is easy. 2



Appendix CThe Flavor Projector { SO(N)RepresentationIn this short appendix we prove the validity of equation (2.19). De�ne the matrixX that corresponds to F̂ ij by:ad[F̂ ij]�ckA def= Xl (X ij)kl�clAX can be read o� from this commutator to bead[F̂ ij]�ckA = �jk�ciA � (�1)jAj�ki�cjA:Since the X are so(N) generators we can write for arbitrary O 2 SO(N):lnO =X aij(O)X ijwhere aij(O) are appropiate factors. Taking the T 0O = exp naij(O)F̂ ijo we getAd[T 0O]�clA = exp �aij(O)ad[F̂ ij]� �clA= 2664exp �aij(O)X ij�| {z }=O 3775kl �clASince the Bose-Fermi states are written in terms of an exponential we have tocalculate what happen when we are acting with T 0O on a collection of creators:T 0O�ciA�cjA : : : j0i = T 0O�ciAT 0�1O T 0O�cjAT 0�1O : : : T 0�1O j0i| {z }=j0i= Ad[T 0O]�ciAAd[T 0O]�cjA : : : j0i= Oii0�ci0AOjj0�cj0A : : : j0iWhen we now perform a Taylor expansion on exp(Oij�cjA iA) and apply theabove, equation (2.19) follows. 49
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Appendix DGeneralized Gaussian IntegralsIn order to get rid of the super-numbers in (3.5) we have to perform the Gaussianintegration. Unfortunatly there are terms of type ���� and �� in the exponent,such that the usual formula as given in the introduction is not applicable. Wehave, therefore, to derive another Gaussian identity.D.1 The SuperdeterminantTo prepare ourselves for the next section we prove the following theorem, whichtells us how to calculate a general Gaussian integral as described above.Theorem D.1 The following identity holds for M =  A BC D ! 2 osp(2n; 2n):Z D( ; � ) exp ��12 � � A + � B � � � C � � D � �� = SDet�1=2  A BC D !where  denotes some super-vector, A, B, C and D are super-matrices and� denotes the super-parity.Proof: To prove this, �rst note that the integral above equalsZ D( ; � ) exp "�12 � � ;�� � A BC D !  � !# :The diagonalizable matrices M = T diag(�;��)T�1 { with � diagonal { aredense in the set of matrices. Thus we are allowed to continue our results tothose not diagonalizable. We take then   0� 0 ! = T�1   � !. Now we haveto check whether the side left of M can be reached by transposition and right51



52 APPENDIX D. GENERALIZED GAUSSIAN INTEGRALSmultiplication with � =  0 ��1 0 !. This � is an involutive automorphism andit is super-symmetric, i.e. � = ���T = ��T�. We see now1:"T�1   � !#T = ( T ; � T )T�1T �= ( � T ;�� T )��1T�1T �Thus we have T = ��1T�1T � as a condition on T which means that T 2Osp(2n,2n), as expected (cf. [Zirn 96b]). This is very similar to the "usual" casewhere we need orthogonal matrices for a similarity transformation.Our measure is furthermore invariant under Osp rotation and thus we arriveat Z D( 0; � 0) exp "�12 � � 0;�� 0� � 00 �� !  0� 0 !# :The rest is quite clear, since the above is { by the super-commutation relations{ equal to Z D( 0; � 0) exp h� � 0� 0i= NQi=1�i;FNQi=1�i;B= SDet�1=2  � 00 �� != SDet�1=2  A BC D !The last equality is clear, since M = Tdiag(�;��)T�1. 2D.2 Matrix ElementsOur goal is now to obtain an expression for single elements of the supermatrixM . This is done { in the same fashion as in 1.2.3 { in the following corollary:1(�)T = (�)T � denotes here a special transposition that allows us to get from �  � � to( � T ;�� T ).



D.2. MATRIX ELEMENTS 53Corollary D.1 An arbitrary matrix element Ak1k2BB can be expressed in terms ofAk1k2BB = SDet1=2M Z D( ; � ) k1B � k2B exp(�12 � � ;�� �M   � !) :where the same notational conventions apply as above and M =  A BC D ! 2osp(2n; 2n).Proof: Let's perform the transformation   � ! !   � ! +M�1  J�� �J !.Now we have to observe that for the Osp(2nj2n) the following equation holds (cf.[Zirn 96b]2): 8g 2 Osp(2nj2n) : g = �g�1T ��1) �gT = g�1�Di�erentiation yields: �XT = �X�) X�1T = ���1X�1�Here we assumed that the algebra element X 2 osp(2n,2n) has an inverse,but this is quite reasonable, since otherwise the SDet�1 expression would makeno sense.Turning back to the expression above we get:"  � !+M�1  J�� �J !#T = h� T ; � T�+ �JT ;�� �JT�M�1 T i �= h� T ; � T�� �JT ;�� �JT� ��1M�1�i �= � T ; � T� � + �JT ;�� �JT� ��1M�1��= � � T ;�� T�+ � �JT ; JT� �T �1��1M�1��= � � T ;�� T�+ � �JT ; JT�M�1Therefore we can �nally write:Z D( ; � ) k1B � k2B exp(�12 � � ;�� �M   � !)= @2@Jk1B @ �Jk2B �����J; �J=0 Z exp(�12 h( � ;�� ) + ( �J; J)M�1iM "  � !+M�1  J�� �J !#+2The di�erent sign in the super-symmetry of � stems from the fact that { for our Osp { thefermionic and bosonic sectors are exchanged (cf. eqn. (2.5).



54 APPENDIX D. GENERALIZED GAUSSIAN INTEGRALS+12( �J; J)M�1  J�� �J !)= @2@Jk1B @ �Jk2B �����J; �J=0 SDet�1=2M exp(12( �J; J)M�1  J�� �J !)= SDet�1=2M 12 hAk1k2BB �Dk2k1BB i= SDet�1=2M 12 hAk1k2BB + (AT )k2k1BB i= Ak1k2BB SDet�1=2MThis proves the corollary. 2



Appendix EDisorder Average for p = 1We calculated in 3.2.2 the lattice action for the sigma model corresponding top = 12 in the probability distribution. Therefore we had to integrate over the fullO(1). In order to arrive at a representation in terms of Z-matrices we have tointegrate over the SO(1) since this corresponds to just one point { p = 1. Thegeneral principles as in 3.2.2 still apply, but this time things will get a little bitmore complicated.We start with equation (3.4) in this case, too. When we then perform the"full" color-
avor transformation for the SO(1) { including the baryonic term {we arrive at something like:hgMNip=1 = hgMNip=1=2 + hgMNiB:Here we have introduced the baryonic term h�iB. Since this is the only un-known expression up to now we will restrict ourselves to the calculation of thisterm. Furthermore, since most of this term is very similar to equation (3.5), wewill look at a single Z; ~Z term in the exponent only (i.e. for one node). Thislooks after C-F transformation such as:J XT;T 0;�=� tanh �1 h��� T̂ (P (00))ZP (00)T̂ T̂ 0 ��� 0T̂ 0 (P (00))+��F (P (00); e)ZP (00)FeT̂ 0 ��� 0T̂ 0 (P (00))+��� T̂ (P (00))ZP (00)T̂ F e0 �� 0F (P (00); e0)+�� T̂ (P � (t� 1)ex(10)) ~ZP (00)T̂ T̂ 0 �� 0T̂ 0 (P � (t0 � 1)ex(10))+���F (P � (e� 1)ex(10); e) ~ZP (00)FeT̂ 0 �� 0T̂ 0 (P � (t0 � 1)ex(10))+ �� T̂ (P � (t� 1)ex(10)) ~ZP (00)T̂ F e0 ��� 0F (P � (e0 � 1)ex(10); e0)i55



56 APPENDIX E. DISORDER AVERAGE FOR P = 1Here we have introduced T = (�; t) as a shorthand notation. The hattedindices T̂ correspond to the whole range except, again, (F; e). To obtain the fullexpression for h�iB we have to apply this transformation to the other nodes aswell.
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